REGULATIONS, CURRICULUM AND SYLLABUS

for

B. TECH

CIVIL ENGINEERING

(w.e.f. 2013-2014)

PONDICHERRY UNIVERSITY PONDICHERRY - 605014

PONDICHERRY UNIVERSITY BACHELOR OF TECHNOLOGY PROGRAMMES (EIGHT SEMESTERS) <u>REGULATIONS</u>

1. Conditions for Admission:

a) Candidates for admission to the first semester of the 8 semester B.Tech Degree programme should be required to have passed :

The Higher Secondary Examination of the (10+2) curriculum (Academic Stream) prescribed by the Government of Tamil Nadu or any other examination equivalent there to with minimum of 45% marks (40% marks for OBC and SC/ST candidates) in aggregate of subjects – Mathematics, Physics and any one of the following optional subjects: Chemistry / Biotechnology/ Computer Science / Biology (Botany & Zoology) or an Examination of any University or Authority recognized by the Executive Council of the Pondicherry University as equivalent thereto.

b) For Lateral entry in to third semester of the eight semester B.Tech programme :

The minimum qualification for admission is a pass in three year diploma or four year sandwich diploma course in engineering / technology from an AICTE approved institution with at least 45% marks (40% marks for OBC and SC/ST candidates) in aggregate in the subjects covered from 3rd to final semester or a pass in B.Sc. degree from a recognized university as defined by UGC with at least 45% marks (40% marks for OBC and SC/ST candidates) and passed XII standard with mathematics as a subject.

Provided that in case of students belonging to B.Sc Stream shall clear the subjects of Engineering Graphics and Engineering Mechanics of the first year Engineering program along with the second year subjects.

Provided further that, the students belonging to B.Sc Stream shall be considered only after filling the supernumerary seats in this category with students belonging to the Diploma stream.

The list of diploma programs approved for admission for each of the degree programs is given in Annexure A.

2. Age Limit :

The candidate should not have completed 21 years of age as on 1st July of the academic year under consideration. For Lateral Entry admission to second year of degree programme, there is no age limit. For SC/ST candidates, the age limit is relaxable by 3 years.

3. Duration of Programme :

The Bachelor of Technology degree programme shall extend over a period of 8 consecutive semesters spread over 4 academic years – two semesters constituting one academic year. The duration of each semester shall normally be 15 weeks excluding examinations.

4. Eligibility for the award of Degree:

No candidate shall be eligible for the award of the degree of Bachelor of Technology, unless he/she has undergone the course for a period of 8 semesters (4 academic years) / 6 semesters (3 academic years for Lateral Entry candidates) in the faculty of Engineering and has passed the prescribed examinations in all the semesters.

5. Branches of Study:

Branch I	- Civil Engineering
Branch II	- Mechanical Engineering
Branch III	- Electronics & Communication Engineering
Branch IV	- Computer Science & Engineering
Branch V	- Electrical & Electronics Engineering
Branch VI	- Chemical Engineering
Branch VII	- Electronics & Instrumentation Engineering
Branch VIII	- Information Technology
Branch IX	- Instrumentation & Control Engineering
Branch X	- Biomedical Engineering
.1 1 1	

or any other branches of study as and when offered. The branch allocation shall be ordinarily done at the time of admission of the candidate to the first semester.

6. Subjects of Study:

The subjects of study shall include theory and practical courses as given in the curriculum and shall be in accordance with the prescribed syllabus. The subjects of study for the first two semesters shall be common for all branches of study.

7. Examinations:

The theory and practical examinations shall comprise continuous assessment throughout the semester in all subjects as well as university examinations conducted by Pondicherry University at the end of the semester (November / December or April / May).

(a) Theory courses for which there is a written paper of 75 marks in the university examination.

The Internal Assessment marks of 25 has to be distributed as 10 marks each for two class tests and 5 marks for class attendance in the particular subject. The distribution of marks for attendance is as follows.

5 marks for 95% and above 4 marks for 90% and above but below 95% 3 marks for 85% and above but below 90% 2 marks for 80% and above but below 85% 1 mark for 75% and above but below 80%

In total, three tests are to be conducted and the better two are to be considered for assessment.

(b) Practical courses for which there is a university practical examination of 50 marks:

The internal assessment marks of 50 has to be distributed as 20 marks for the periodic practical works and records submitted thereof, 15 marks for an internal practical examination, 5 marks for an internal viva voce, and 10 marks for class attendance in the particular subject. The distribution of marks is as given below.

10 marks for 95% and above

8 marks for 90% and above but below 95%

6 marks for 85% and above but below 90%

4 marks for 80% and above but below 85%

2 marks for 75% and above but below 80%

8. Requirement for appearing for University Examination:

A candidate shall be permitted to appear for university examinations at the end of any semester only if:

i) He / She secures not less than 75% overall attendance arrived at by taking into account the total

number of periods in all subjects put together offered by the institution for the semester under consideration.

(Candidates who secure overall attendance greater than 60% and less than 75% have to pay a condonation fee as prescribed by University along with a medical certificate obtained from a medical officer not below the rank of Asst. Director)

- ii) He / She earns a progress certificate from the Head of the institution for having satisfactorily completed the course of study in all the subjects pertaining to that semester
- iii) His / Her conduct is found to be satisfactory as certified by the Head of the institution.
 A candidate who has satisfied the requirement (i) to (iii) shall be deemed to have satisfied the course requirements for the semester.

9. Procedure for completing the course:

A candidate can join the course of study of any semester only at the time of its normal commencement and only if he/she has satisfied the course requirements for the previous semester and further has registered for the university examinations of the previous semester in all the subjects as well as all arrear subjects if any.

However, the entire course should be completed within 14 consecutive semesters (12 consecutive semesters for students admitted under lateral entry).

10. Passing Minimum:

- a. A candidate shall be declared to have passed the examination in a subject of study only if he/she secures not less than 50% of the total marks (Internal Assessment plus University examination marks) and not less than 40% of the marks in University examination
- b. A candidate who has been declared "Failed" in a particular subject may reappear for that subject during the subsequent semesters and secure a pass. However, there is a provision for revaluation of failed or passed subjects provided he/she fulfills the following norms for revaluation.
 - i. Applications for revaluation should be filed within 4 weeks from the date of declaration of results or 15 days from the date of receipt of marks card whichever is earlier.
 - ii. The candidate should have attended all the college examinations as well as university examinations.
 - iii. If a candidate has failed in more than four papers in the current university examination, his/her representation for revaluation will not be considered.
 - iv. The request for revaluation must be made in the format prescribed duly recommended by the Head of the Institution along with the revaluation fee prescribed by the University.

Further the University examination marks obtained in the latest attempt shall alone remain valid in total suppression of the University examination marks obtained by the candidate in earlier attempts

11. Award of Letter Grades

The assessment of a course will be done on absolute marks basis. However, for the purpose of reporting the performance of a candidate, letter grades, each carrying certain points, will be awarded as per the range of total marks (out of 100) obtained by the candidate, as detailed below:

Range of Total Marks	Letter Grade	Grade Points
90 to 100	S	10
80 to 89	А	9
70 to 79	В	8
60 to 69	С	7
55 to 59	D	6
50 to 54	Е	5

0 to 49	F	0
Incomplete	FA	

'F' denotes failure in the course. 'FA' denotes absent / detained as per clause 8.

After results are declared, grade sheets will be issued to the students. The grade sheets will contain the following details:

- (a) The college in which the candidate has studied.
- (b) The list of courses enrolled during the semester and the grades scored.
- (c) The Grade Point Average (GPA) for the semester and Cumulative Grade Point Average (CGPA) of all enrolled subjects from first semester onwards.
- (d) GPA is the ratio of sum of the products of the number of credits (C) of courses registered and the corresponding grades points (GP) scored in those courses, taken for all the courses and sum of the number of credits of all the courses

$$GPA = (SUM \ OF \ (C \times GP) / SUM \ OF \ C)$$

CGPA will be calculated in a similar manner, considering all the courses enrolled from first semester. FA grades are to be excluded for calculating GPA and CGPA.

The conversion of CGPA into percentage marks is as given below

% Marks = (CGPA - 0.5) x 10

12. Award of Class and Rank:

- i) A candidate who satisfies the course requirements for all semesters and who passes all the examinations prescribed for all the eight semesters (six semesters for lateral entry candidates) within a maximum period of 7 years (6 years for lateral entry candidates) reckoned from the commencement of the first semester to which the candidate was admitted shall be declared to have qualified for the award of degree.
- ii) A candidate who qualifies for the award of the degree passing in all subjects pertaining to semesters 3 to 8 in his/her first appearance within 6 consecutive semesters (3 academic years) and in addition secures a CGPA of 8.50 and above for the semesters 3 to 8 shall be declared to have passed the examination in **FIRST CLASS** with **DISTINCTION**.
- iii) A candidate who qualifies for the award of the degree by passing in all subjects relating to semesters 3 to 8 within a maximum period of eight semesters after his/her commencement of study in the third semester and in addition secures CGPA not less than 6.5 shall declared to have passed the examination in **FIRST CLASS**.
- iv) All other candidates who qualify for the award of degree shall be declared to have passed the examination in **SECOND CLASS**.
- v) For the Award of University ranks and Gold Medal for each branch of study, the CGPA secured from 1st to 8th semester alone should be considered and it is mandatory that the candidate should have passed all the subjects from 1st to 8th semester in the first attempt. Rank certificates would be issued to the first ten candidates in each branch of study.

13. Provision for withdrawal:

A candidate may, for valid reasons, and on the recommendation of the Head of the Institution be granted permission by the University to withdraw from writing the entire semester examination as one Unit. The withdrawal application shall be valid only if it is made earlier than the commencement of the last theory examination pertaining to that semester. Withdrawal shall be permitted only once during the entire course. Other conditions being satisfactory, candidates who withdraw are also eligible to be awarded DISTINCTION whereas they are not eligible to be awarded a rank.

14. Discontinuation of Course:

If a candidate wishes to temporarily discontinue the course for valid reasons, he/she shall apply through

the Head of the Institution in advance and obtain a written order from the University permitting discontinuance. A candidate after temporary discontinuance may rejoin the course only at the commencement of the semester at which he/she discontinued, provided he/she pays the prescribed fees to the University. The total period of completion of the course reckoned from the commencement of the first semester to which the candidate was admitted shall not in any case exceed 7 years, including of the period of discontinuance.

15. Revision of Regulations and Curriculum:

The University may from time to time revise, amend or change the regulations of curriculum and syllabus as and when found necessary.

B.Tech courses in which admission is sought	Diploma courses eligible for admission
Civil Engineering	Civil Engineering Civil and Rural Engineering Architectural Assistantship Architecture Agricultural Engineering
Mechanical Engineering	 Mechanical Engineering Automobile Engineering Agricultural Engineering Mechanical and Rural Engineering Refrigeration and Air-conditioning Agricultural Engineering & Farm Equipment Technology Metallurgy Production Engineering Machine Design & Drafting Machine tool maintenance and Repairs Printing Technology / Engineering Textile Engineering / Technology Tool Engineering
Electrical and Electronics Engineering Electronics & Communication Engineering Electronic and Instrumentation Engineering Instrumentation and Control Engineering Bio Medical Engineering	Electrical Engineering Electrical and Electronics Engineering Electronics and Instrumentation Engineering Instrumentation Engineering / Technology Electronics and Communication Engg. Electronics Engineering Medical Electronics Instrumentation and Control Engineering Applied Electronics
Chemical Engineering	Chemical Engineering Chemical Technology Petrochemical Technology Petroleum Engineering Ceramic Technology Plastic Engineering Paper & Pulp Technology / Polymer Technology
Information Technology Computer Science & Engineering	Computer Science and Engineering Computer Technology Electrical and Electronics Engineering Electronics & Communication Engineering Electronics & Instrumentation Engineering Instrumentation Engineering / Technology

CURRICULUM

B.Tech. - CIVIL ENGINEERING

I SEMESTER

Code No.	Name of the Subjects	Periods			Credits		Marks		
		L	Т	Р		IA	UE	ТМ	
	Theory								
T 101	Mathematics – I	3	1	-	4	25	75	100	
T 102	Physics	4	-	-	4	25	75	100	
T 103	Chemistry	4	-	-	4	25	75	100	
T 104	Basic Electrical and Electronics Engineering	3	1	-	4	25	75	100	
T 105	Engineering Thermodynamics	3	1	-	4	25	75	100	
T 106	Computer Programming	3	1	-	4	25	75	100	
	Practical								
P 101	Computer Programming Lab	-	-	3	2	50	50	100	
P 102	Engineering Graphics	2	-	3	2	50	50	100	
P 103	Basic Electrical & Electronics Lab	-	-	3	2	50	50	100	
	Total	22	4	9	30	300	600	900	

II SEMESTER

Code No.	Name of the Subjects	Periods			Periods Credits		Marks		
		L	Т	Р		IA	UE	ТМ	
	Theory								
T 107	Mathematics – II	3	1	-	4	25	75	100	
T 108	Material Science	4	-	-	4	25	75	100	
T 109	Environmental Science	4	-	-	4	25	75	100	
T 110	Basic Civil and Mechanical Engineering	4	-	-	4	25	75	100	
T 111	Engineering Mechanics	3	1	-	4	25	75	100	
T 112	Communicative English	4	-	-	4	25	75	100	
	Practical								
P 104	Physics lab	-	-	3	2	50	50	100	
P 105	Chemistry lab	2	-	3	2	50	50	100	
P 106	Workshop Practice	-	-	3	2	50	50	100	
P 107	NSS / NCC *	-	-	-	-	-	-	-	
	Total	22	2	9	30	300	600	900	

* To be completed in I and II semesters, under Pass / Fail option only and not counted for CGPA calculation.

III Semester

Subject	Name of the subject		Periods		Credits	Marks		
Code	Name of the subject	L	Т	Р	Ciedits	IA	UE	TM
	Theory							
MA T31	Mathematics III	3	1	-	4	25	75	100
CE T32	Geo Science Engineering	4	-	-	4	25	75	100
CE T33	Building Technology	4	-	-	4	25	75	100
CE T34	Mechanics of Solids-I	3	1	-	4	25	75	100
CE T35	Mechanics of Fluids	3	1	-	4	25	75	100
CE T36	Surveying-I	3	1	-	4	25	75	100
	Practical							
CE P31	Surveying Lab – I	-	-	3	2	50	50	100
CE P32	Material Testing Lab - I	-	-	3	2	50	50	100
CE P33	Building planning and drawing	2	-	3	2	50	50	100
	Total	22	4	9	30	300	600	900

IV Semester

Subject	Name of the subject		Periods		Credits		Marks	
Code	Name of the subject	L	Т	Р	Credits	IA	UE	TM
	Theory							
MA T41	Mathematics - IV	3	1	-	4	25	75	100
CE T42	Concrete Technology	4	-	-	4	25	75	100
CE T43	Environmental Engineering - I	4	-	-	4	25	75	100
CE T44	Mechanics of Solids - II	3	1	-	4	25	75	100
CE T45	Hydraulic and Hydraulic Machinery	3	1	-	4	25	75	100
CE T46	Surveying - II	3	1	-	4	25	75	100
	Practical							
CE P41	Surveying Lab II	-	-	3	2	50	50	100
CE P42	Fluid Mechanics & Machines Lab	-	-	3	2	50	50	100
CE P43	Geo Science Engineering Lab	-	-	3	2	50	50	100
SP P44	Physical Education*	-	-	-	-	-	-	-
	Total	20	4	9	30	300	600	900

* Under Pass / Fail option only and not counted for CGPA calculation.

V- Semester

Subject Code	Name of the subject	Periods			Credits	Marks			
		L	Т	Р		IA	UE	TM	
	Theory								
CE T51	Design of RCC structures	3	1	-	4	25	75	100	
CE T52	Structural Analysis - I	3	1	-	4	25	75	100	
CE T53	Geotechnical Engineering – I	3	1	-	4	25	75	100	
CE T54	Environmental Engineering – II	4	-	-	4	25	75	100	
CE T55	Transportation Engineering - I	3	1	-	4	25	75	100	
	Practical								
CE P51	Geotechnical Engineering Lab	-	-	3	2	50	50	100	
CE P52	Environmental Engineering Lab	-	-	3	2	50	50	100	
CE P53	Material Testing Lab - II	-	-	3	2	50	50	100	
HS P54	General proficiency – I	-	-	3	2	100	-	100	
	Total	16	4	12	28	375	525	900	

VI Semester

Subject	Name of the ophicat	-	Periods		Credits		Marks	
Code	Name of the subject	L	Т	Р	Credits	IA	UE	TM
	Theory							
CE T61	Structural Analysis – II	3	1	-	4	25	75	100
CE T62	Geotechnical Engineering – II	3	1	-	4	25	75	100
CE T63	Transportation Engineering - II	3	1	-	4	25	75	100
CE TE1	Elective I	4	0	-	4	25	75	100
CE TE2	Elective II	4	0		4	25	75	100
	Practical							
CE P61	Transportation Engineering Lab	-	-	3	2	50	50	100
CE P62	Estimation Costing and Valuation Engineering Lab	2	-	3	2	50	50	100
CE P63	Computer Aided Design Lab	-	-	3	2	50	50	100
HS P64	General proficiency - II	-	-	3	2	100	-	100
CE SE1	Surveying Camp *	-	-	3	2	100	-	100
	Total	19	3	15	30	475	525	1000

* The Survey camp will be conducted at end of V semester.

VII Semester

Subject			Periods		Curdita		Marks		
Code	Name of the subject	L	Т	Р	Credits	IA	UE	TM	
	Theory								
CE T71	Design of steel structures	3	1	-	4	25	75	100	
CE T72	Hydrology and Water Resources Engineering	3	1	-	4	25	75	100	
CE TE3	Elective III	4	0	-	4	25	75	100	
CE TE4	Elective IV	4	0	-	4	25	75	100	
	Practical								
CE P71	Design and Drawing (RCC & steel)	2	-	3	2	50	50	100	
CE CV7	Comprehensive viva	-	-	3	2	50	50	100	
CE PW7	Project Phase - I	-	-	6	6	50	50	100	
	Total	16	2	12	26	250	450	700	

VIII Semester

Subject	Nome of the subject	Name of the subject Periods			Credits	Marks			
Code	Name of the subject	L	Т	Р	Credits	IA	UE	TM	
	Theory								
CE T 81	Construction management	4	-	-	4	25	75	100	
CE TE5	Elective-V	4	0	-	4	25	75	100	
CE TE6	Elective-VI	4	0	-	4	25	75	100	
	Practical								
CE P81	Professional Ethical Practice	3	-	-	2	100	-	100	
CE W8	Industrial Training/Internship	-	-	3	2	100	-	100	
CE PW8	Project Phase - II	-	-	9	8	50	50	100	
	Total	15	0	12	24	325	275	600	

CODE	TITLE
CEE01	DESIGN OF PRESTRESSED CONCRETE STRUCTURES
CEE02	COASTAL AND OFFSHORE STRUCTURES
CEE03	INDUSTRIAL WASTE DISPOSAL AND TREATMENT
CEE04	SAFETY PRACTICES IN CONSTRUCTION
CEE05	CONSTRUCTION METHODS AND EQUIPMENTS
CEE06	GEOTECHNICAL PROCESSES AND APPLICATIONS
CEE07	REMOTE SENSING AND GIS
CEE08	FINITE ELEMENT ANALYSIS
CEE09	ADVANCED DESIGN OF RCC STRUCTURES
CEE10	SITE INVESTIGATION METHODS AND PRACTICES
CEE11	COASTAL ENGINEERING
CEE12	TRAFFIC ENGINEERING AND MANAGEMENT
CEE13	HIGHWAY AND AIRPORT PAVEMENT DESIGN
CEE14	ADVANCED STRUCTURAL ANALYSIS
CEE15	GROUND WATER HYDROLOGY
CEE16	MACHINE FOUNDATIONS
CEE17	EARTH RETAINING STRUCTURES
CEE18	UNDERGROUND STRUCTURES
CEE19	AIR AND NOISE POLLUTION
CEE20	FAILURE ASSESSMENT AND REHABILITATION STRUCTURES
CEE21	BRIDGE ENGINEERING
CEE22	ADVANCED DESIGN OF STEEL STRUCTURES
CEE23	ENVIRONMENTAL IMPACT ASSESSMENT
HSE24	ENGINEERING ECONOMICS
CEE25	DESIGN AND CONSTRUCTION OF PREFABRICATED STRUCTURES
CEE26	EARTHQUAKE RESISTANT DESIGN OF STRUCTURES
CEE27	DESIGN OF INDUSTRIAL STRUCTURES
CEE28	FORMWORK FOR CONCRETE STRUCTURES
CEE29	DISASTER MITIGATION AND MANAGEMENT
CEE 30	IRRIGATION AND DRAINAGE ENGINEERING

FIRST SEMESTER

	Civil Engineering Ser	Programme mester I				o;	2	
Course		Hours	s / We	ek	Credit	Max	imum N	Jarks
Code	Course Name	L	T	P	C	IA	UE	Total
T 101	MATHEMATICS – I	3	1	0	4	25	75	100
ii		ii	L				1	L
	1. To introduce the idea of applyin	g calculus conc	cepts t	o pro	blems in	Engine	ering.	
	2. To familiarize the student with f					0	0	
Objective (s)	3. To acquaint the student with m					ating m	ultiple i	ntegral
, , , ,	and their usage.					U	1	U
	4. To introduce effective mathema	atical tools for	the so	olutio	ons of diff	ferential	equation	ons tha
	model physical processes						1	
UNIT – I	Calculus						Total H	ours · (
	ius of curvature, evolutes and involutes	s Beta and Gar	nma f	incti	ons and			
UNIT – II	Function of Several variables	. Deta and Oa	111111111111111111111111111111111111111	uncu		······	Total H	
	ves, Total derivatives, Differentiation	of implicit fun	ction	s Ch	ange of v			
	es, Taylor's series for functions of two							
undetermined		· · · · · · · · · · · · · · · · · · ·			,	00	5	
UNIT – III	Multiple Integrals and Applicatio	ons				i	Total H	ours :
	rals, change of order of integration a		varial	oles i	n double			
1 (tions: Areas by double integration and	0				0		
UNIT – IV	Differential Equations		.	<u>O</u>			Total H	
	ns, First order linear equations, Bernow	ulli's equation,	ortho	gona	l trajector	ies, gro	wth, de	cay and
	plications: Equations not of first de							
equations solv	able for x and Clairaut's type.				1 1			
UNIT – V	Differential Equations (Higher or	rder)					Total H	ours :
	ntial equations of higher order – wit	h constant co	efficie	ents,	the opera	itor D,	Euler'	s linea
Linear differe	itial equations of ingrief order with	ii conotanti cos				anation	is, solu	tion b
	gher order with variable coefficients		linea	r dif	ferential e	quation		
equation of h		- simultaneous		r dif	ferential e	quation	-	
equation of h variation of pa	gher order with variable coefficients rameters method– simple applications	- simultaneous	uits			-	'otal Ho	urs:6
equation of h variation of pa Total Contact Text Books	gher order with variable coefficientsrameters method- simple applicationsHours: 45Total Tutorials: 15	- simultaneous to electric circu Total Prac	uits tical (Class	:0	т Т		
equation of h variation of pa Total Contact Text Books 1. Venkatara	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 nan, M. K, Engineering Mathematics	- simultaneous to electric circu Total Prac	uits tical (Class	:0	т Т		
equation of h variation of pa Total Contact Text Books 1. Venkatara Company,	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V)	- simultaneous to electric circu Total Prac s (First Year),	uits tical (Secor	Class nd Eo	: 0 lition, Th	T ne Natio	onal Pu	olishinį
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 nan, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics,	- simultaneous to electric circu Total Prac s (First Year),	uits tical (Secor	Class nd Eo	: 0 lition, Th	T ne Natio	onal Pu	olishinį
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y)	- simultaneous to electric circu Total Prac s (First Year),	uits tical (Secor	Class nd Eo	: 0 lition, Th	T ne Natio	onal Pu	olishinį
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B. Unit II on Reference Bo	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks	- simultaneous to electric circu Total Prac s (First Year), Khanna Publis	uits etical (Secor shers,	Class nd Eo New	: 0 lition, Th Delhi, 4	T ne Natio 1 st Edit	onal Pu	olishin
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on Reference Bo 1. Veerarajar	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 nan, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks T., Engineering Mathematics for first	 simultaneous to electric circu Total Prace (First Year), Khanna Publis year, Tata McC 	uits Etical (Secor Shers,	Class nd Eo New Hill, I	: 0 lition, Th Delhi, 4 New Delh	T ne Natio 1 st Edit: ni, 2008.	onal Pu	olishin
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on Reference Bo 1. Veerarajar 2. Kandasar	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks T., Engineering Mathematics for first y P. et al, Engineering Mathematics, Vo	 simultaneous to electric circu Total Praces (First Year), Khanna Publis year, Tata McCol.1 & 2, S. Charton 	uits tical (Secor shers, Graw	Class nd Eo New Hill, I	: 0 dition, Th Delhi, 4 New Dell New Dell	T ne Natio 1 st Edit ni, 2008. hi.	onal Pu ion, 201	olishin
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on Reference Bo 1. Veerarajar 2. Kandasam 3. Ramana B	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks T., Engineering Mathematics for first y P. et al, Engineering Mathematics, Vo V., Higher Engineering Mathematics, Vo	 simultaneous to electric circu Total Prac (First Year), Khanna Publis year, Tata McC ol.1 & 2, S. Cha Tata McGraw I 	uits tical (Secor shers, Graw-J and & Hill N	Class nd Eo New Hill, 1 2 Co., ew D	: 0 dition, Th Delhi, 4 New Delh New Del Delhi, 11 th	T ne Natio 1 st Edit ni, 2008. hi. Reprint	onal Pu ion, 201	olishin
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on Reference Bo 1. Veerarajar 2. Kandasarr 3. Ramana B 4. Erwin Kre	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks T., Engineering Mathematics for first y P. et al, Engineering Mathematics, Vo V., Higher Engineering Mathematics, v yszig, Advanced Engineering Mathematics	 simultaneous to electric circu Total Prace (First Year), Khanna Publis year, Tata McCol.1 & 2, S. Cha Tata McGraw I atics, John Wile 	uits tical (Secor shers, Graw- and & Hill N ey & S	Class nd Eo New Hill, I Co., ew D	: 0 dition, Th Delhi, 4 New Delh New Del Delhi, 11 th New Dell	T ne Natio 1 st Edit ni, 2008. hi. Reprint ni, 8th E	onal Pu ion, 201 , 2010. Edition.	olishin, 1. (Fo
equation of h variation of pa Total Contact Text Books 1. Venkatara Company, 2. Grewal B Unit II on Reference Bo 1. Veerarajar 2. Kandasarr 3. Ramana B 4. Erwin Kre	gher order with variable coefficients rameters method– simple applications Hours : 45 Total Tutorials : 15 man, M. K, Engineering Mathematics Chennai 2010 (For units I, III, IV, V) S., Higher Engineering Mathematics, y) oks T., Engineering Mathematics for first y P. et al, Engineering Mathematics, Vo V., Higher Engineering Mathematics, v yszig, Advanced Engineering Mathematics, and Manish Goyal, A Text Book o	 simultaneous to electric circu Total Prace (First Year), Khanna Publis year, Tata McCol.1 & 2, S. Cha Tata McGraw I atics, John Wile 	uits tical (Secor shers, Graw- and & Hill N ey & S	Class nd Eo New Hill, I Co., ew D	: 0 dition, Th Delhi, 4 New Delh New Del Delhi, 11 th New Dell	T ne Natio 1 st Edit ni, 2008. hi. Reprint ni, 8th E	onal Pu ion, 201 , 2010. Edition.	blishin 1. (Fo

Departm	nent : C	ivil Engineering	Programme	: B.	Tech	. Civil Eng	gineering	<u>g</u>		
Carren		Seme	Hours	/ 11	Voolr	Credit	May	imum	Ма	mlro.
Course Code		Course Name	L	/ v T	Р	Crean	IA	UE		Total
T 102		PHYSICS	L 4	1 0	0	4	25	75		100ar
1 102				0				75		100
Objectiv	ve (s)	 To understand the concepts of advancement of technology and in modern-day society. To expose the students to different applications to different Engineerin To understand the concepts and 	ent areas of ng disciplines	ew j	produ vsics v	cts that di	ramatica re direct	lly tran	sfc .nc	ormed e and
		devices, Lasers and Fiber optics, N	luclear energy	y so	urces	and wave	mechan	ics		
UNIT -	- I	Acoustics & NDT					Т	'otal He	oui	rs : 12
Acoustics and Res	- Facto onance	'application – Ultrasonic Echo method ors affecting Acoustic of Buildings (Rev) and their Remedies - Sabine's formulandom's (elementary idea)	verberation, I	ouc	lness,	Focusing,				
UNIT -	- II	Optics					Т	'otal Ho	oui	rs : 12
Interferend	æ - Air	Wedge – Michelson's Interferometer	– Waveleng	th 1	Deter	nination .	– Interf	erence	Fi	lter –
Antirefle		8		,						
Diffraction	n - Dif	fraction Grating - Dispersive power	of grating	- R	esolvi	ng Power	of Gr	ating 8	k i	Prism
	on – Ba			y of	Doub			uarter a	anc	1 Half
Polarisati		sic concepts of Double Refraction - Hu Specific Rotary Power – Laurent Half Sh	ygens Theory		Dout			uarter a	anc	l Half
Polarisati	ates – S	sic concepts of Double Refraction - Hu	ygens Theory		Dout		tion – Q	uarter a		
Polarisatie Wave Pla UNIT – Lasers –	ates – S • III Princip	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul	ygens Theory ade Polarime lated Emissio	ons	- Ein	ole Refract	ion – Q T efficient	'otal Ho s – Po	oui pu	rs : 12 lation
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types co	ates – S - III Princip n and I . As Las <i>tics</i> - Pri of opti	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index,	ygens Theory ade Polarime lated Emissio ors(qualitative cal fiber – N	eter ons e Id	- Ein eas) – erical	stein's Co Types of	ion – Q T efficient Lasers - nd acce	'otal Ho s – Po NdYA ptance	oui pu \G an	rs : 12 lation , CO ₂ gle. –
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun	ates – S • III Princip n and I . As Las <i>tics</i> - Pri of opti iication	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul aser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index,	ygens Theory ade Polarime lated Emissio ors(qualitative cal fiber – N	eter ons e Id	- Ein eas) – erical	stein's Co Types of	ion – Q T efficient Lasers - nd acce ors and	'otal Ho s – Po NdYA ptance d Fibro	oui pu AG an e	rs : 12 lation , CO ₂ gle. – Optic
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types co commune UNIT –	ates – S - III Princip n and I . As Las <i>tics</i> - Pri of opti- nication - IV	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul aser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics	ygens Theory ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A	eter ons e Id um ppli	- Ein eas) – erical cation	stein's Co Types of aperture a to sens	ion – Q T efficient Lasers - nd acce ors and T	'otal Ho s – Po NdYA ptance d Fibro	oun pu AG an e	rs : 12 lation , CO ₂ gle. – Optic
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types co commun UNIT – Matter V	ates – S - III Princip n and I . As Las tics - Pri of opti- nication - IV Waves	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertair	lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle	ons e Id um ppli	- Ein eas) – erical cation Schrö	stein's Co Types of aperture a to sens dinger W	ion – Q T efficient Lasers - nd acce ors and T ave Eq	fotal Ho s – Po NdYA ptance f Fibro fotal Ho uation	oun opu AG an e	rs : 12 lation , CO ₂ gle. – Optic rs : 12 Time
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende	ates – S - III Princip n and I . As Las tics - Pri of opti iication - IV Waves ent – T	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul aser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics	lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle	ons e Id um ppli	- Ein eas) – erical cation Schrö	stein's Co Types of aperture a to sens dinger W	ion – Q T efficient Lasers - nd acce ors and T ave Eq	fotal Ho s – Po NdYA ptance f Fibro fotal Ho uation	oun opu AG an e	rs : 12 latior , CO gle Optic rs : 12 Time
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende	ates – S - III Princip n and I . As Las <i>tics</i> - Pri of opti- nication - IV Waves ent – T cal Tur	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul aser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertair "ime Independent – Application to Par	lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle	ons e Id um ppli	- Ein eas) – erical cation Schrö	stein's Co Types of aperture a to sens dinger W	ion – Q T efficient Lasers - nd acce ors and T ave Eq ential B	fotal Ho s – Po NdYA ptance f Fibro fotal Ho uation	oun opu AG an e oun – Qua	rs : 12 lation , CO gle. – Optic rs : 12 Time intum
Polarisation Wave Pla UNIT – Lasers – T Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Dependen Mechanii UNIT – General in fission	ates $-S$ III Princip n and I As Las <i>tics</i> - Pri of opti- dication IV Waves ent $-T$ cal Tur V Proper n $-Ni$	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertair ime Independent – Application to Par neling – Tunnel Diode.	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle ticle in a Or narge) – Mass r Reactors	eter ons e Id umo ppli – ne E G De	- Ein eas) – erical cation Schrö Dimen	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR –	ion – Q T efficient Lasers - nd acce ors and T ave Eq ential B T Energy - FBTR.	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Disint Nuclea	oui pu AG an e oui – Qua	rs : 12 latior , CO gle Optio rs : 12 Time ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions	ates $-S$ - III Princip n and I . As Las tics - Pri of opti- dication - IV Waves ent $-T$ cal Tur - V Proper n $-Nt$ s for fu	sic concepts of Double Refraction - Hug pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain "ime Independent – Application to Par neling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle ticle in a Or narge) – Mass r Reactors	etter ons e Id umo ppli - ne I e De - P'	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Disint Nuclea	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option es : 12 Time antum es : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commune UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co	ates $-S$ - III Princip Princip n and I As Las tics - Pri of opti ication - IV Waves ent $-T$ cal Tur - V Proper n $-Nz$ s for fue	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonato ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain 'ime Independent – Application to Par meling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear usion reactor – D-D and D-T reactions,	ygens Theory nade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or narge) – Mass r Reactors Basic princip	etter ons e Id umo ppli - ne I e De - P'	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Disint Nuclea rs.	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option es : 12 Time antum es : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra	ates $-S$ - III Princip n and I . As Las dics - Pri of opti- dication - IV Waves ent $-T$ cal Tur - V Proper n $-N_2$ s for fu- ontact H ooks djendrai	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonator ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain "ime Independent – Application to Par meling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear sion reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or narge) – Mass r Reactors Basic princip Total Prace	etter ons e Id um ppli - ne E - P les tical	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option es : 12 Time antum es : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra 2. Arth	ates $-S$ - III Princip n and I As Las tics - Pri of opti- dication - IV Waves ent $-T$ cal Tur - V Proper n $-Nt$ s for fu ontact H ooks djendran ur Beis	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonator ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain "ime Independent – Application to Par meling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch <i>uclear Reactor</i> : Materials Used in Nuclear usion reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N er, Concept of Modern Physics, 6 th Ed, 7	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or narge) – Mass r Reactors Basic princip Total Prace	etter ons e Id um ppli - ne E - P les tical	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option es : 12 Time antum es : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra 2. Arth Referen	ates $-S$ III Princip n and I As Las <i>tics</i> - Pri of opti- nication IV Waves ent $-T$ cal Tur- V Proper n $-N_2$ s for fur- otact Hooks ijendrat ur Beis ce Boo	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonator ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain 'ime Independent – Application to Par meling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch <i>uclear Reactor</i> : Materials Used in Nuclear Ision reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N er, Concept of Modern Physics, 6 th Ed, 7 Ner, Conce	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or narge) – Mass r Reactors Basic princip Total Prace	etter ons e Id um ppli - ne E - P les tical	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option cs : 12 Time antum cs : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra 2. Arth Referen 1. Ajay	ates $-S$ III Princip n and I As Las diss - Princip of opti- dication IV Waves ent $-T$ cal Tur- V Proper- n $-Nz$ s for fur- ontact Hooks djendrat ur Beis ce Boo Ghatal	sic concepts of Double Refraction - Hug pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonate ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain 'ime Independent – Application to Par neling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear ision reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N er, Concept of Modern Physics, 6 th Ed, 7 bks x, Optics, TMH, New Delhi, 2007.	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or harge) – Mass r Reactors Basic princip Total Pract New Delhi 20 TMH, New I	etter ons e Id um ppli - ne E - e De - e P iles tical	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U ii 2008	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option es : 12 Time antum es : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commune UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra 2. Arth Referen 1. Ajay 2. Thiag	ates $-S$ - III Princip n and I As Las tics - Pri of opti- dication - IV Waves ent $-T$ cal Tur - V Proper n $-Nt$ s for fur ontact H ooks djendran ur Beis ce Boc Ghatal garajan	sic concepts of Double Refraction - Hu pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonator ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain "ime Independent – Application to Par nneling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear ision reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N er, Concept of Modern Physics, 6 th Ed, 7 oks x, Optics, TMH, New Delhi, 2007. and Ghatak, Laser and Application, TM	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle ticle in a Or harge) – Mass r Reactors Basic princip Total Pract New Delhi 20 TMH, New I IH, New Del	etter ons e Id um ppli – ne I les tical 111 (Dell hi 2	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U ii 2008	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option cs : 12 Time antum cs : 12 ration
Polarisation Wave Pla UNIT – Lasers – Inversion laser, Ga Fiber Opt Types of commun UNIT – Matter V Depende Mechanii UNIT – General in fission reactions Total Co Text Bo 1. V Ra 2. Arth Referen 1. Ajay 2. Thiag 3. R. M	ates $-S$ III Princip n and I As Las <i>tics</i> - Pri of opti- dication IV Waves ent $-T$ cal Tur- V Proper n $-Ni$ s for fur- otas ijendrari ur Beis ce Boo Ghatal garajan uruges	sic concepts of Double Refraction - Hug pecific Rotary Power – Laurent Half Sh Lasers & Fiber Optics les of Laser – Spontaneous and Stimul Laser Action – Types of optical resonate ser – Application of Lasers. nciple and Propagation of light in optic cal fibers (material, refractive index, Wave Mechanics – de Broglie Wavelength – Uncertain 'ime Independent – Application to Par neling – Tunnel Diode. Nuclear energy source ties of Nucleus (Size, Mass, Density, Ch uclear Reactor: Materials Used in Nuclear ision reactor – D-D and D-T reactions, Hours : 60 Total Tutorials : 0 n, Engineering Physics, 2 nd Ed., TMH, N er, Concept of Modern Physics, 6 th Ed, 7 bks x, Optics, TMH, New Delhi, 2007.	ade Polarime lated Emissio ors(qualitative cal fiber – N , mode)- A nty Principle rticle in a Or narge) – Mass r Reactors Basic princip Total Prace New Delhi 20 TMH, New Del Mew Delhi 20	etter ons e Id um ppli – ne I les tical 111 (Dell hi 2	- Ein eas) – erical cation Schrö Dimen efect – WR – of nuc Class For U ii 2008	stein's Co Types of aperture a to sens dinger W sional pot Binding I BWR – lear fusion : 0	ion – Q T efficient Lasers - nd acce ors and Tave Eq ential B T Energy - FBTR. n reactor T V only)	otal Ho s – Po NdYA ptance f Fibro otal Ho uation ox – Q otal Ho Nuclea rs. otal Ho	oun pu AG an e oun - Qua eg r f	es : 12 lation , CO gle Option cs : 12 Timo ntum es : 12 ration Tusion

New Delhi, 1997 6. Avadhanulu M N Engineering Physics, Vol-I, S. Chand & Co, 2009.

Department : Civ	<u> </u>	Programm	ne :	: B	. Т	ech.	Civil Eng	gineering	5		
	Semester				11/7	1	0 1		•	٦ ٢	1
Course	Course Name	Ho	urs				Credit		ximum		
Code		L		Γ	······	P	C	IA	UE		Total
T 103	CHEMISTRY	4		C)	0	4	25	75		100
011 1 ()	1. To know about the importance of Ch							n			
Objective (s)	 To understand the chemistry backgro To apply chemistry knowledge for en 					L	ess				
UNIT – I	Water	<u> </u>			L			Г	'otal Ho	our	s:12
Hardness of w	ater – units and calcium carbonate equiva	alent. Det	err	mi	nat	ion	of hard	ness of	water-	E	DTA
	vantages of hardwater-boiler scale and slue										
	n. Water softening method – internal &	0					. 1	0		<u> </u>	_
	exchange process. Desalination – reverse of								p-0 -0 -00	,	
UNIT – II	Polymers							Γ	'otal Ho	nır	$s \cdot 12$
	types of polymerization reactions –	mechanist	n	0	f	radi	al ion				
· · · · · · · · · · · · · · · · · · ·	s. Polymer properties – chemical resistance,						,		0		
	and thermosets. Preparation, properties										
1	1 / 1 1								, ,		,
	Rubbers – vulcanization, synthetic rubbe								-		
	lymers – classification and applications. I										
0	tituents of plastic, moulding techniques	– compi	es	S1C	on,	inje	ection, t	ransfer	and e	xtr	usion
moulding							ī				
UNIT – III	Electrochemical Cells								otal Ho		
	single electrode potential, standard electroc	1									
	t. Nernst equation. Electrolyte concentration										. 0
	electrodes. Batteries - primary and seconda	ary cells, l	acl	an	iche	e cel	l, lead a	cid stor	age cell	l, N	Ji-Cd
battery & alkali	ne battery. Fuel cells - H_2 - O_2 fuel cell.										
UNIT – IV	Corrosion And Its Control							Г	'otal Ho	our	s:12
Chemical & e	electrochemical corrosion-Galvanic series	s-galvanic,	F	oit	ting	z, s	tress ar	nd con	centrati	on	cell
	cors influencing corrosion-corrosion cont										
inhibitors. Prot	ective coating - types of protective coating	s-metallic	c	oat	ting	-tin	ning and	l galvar	izing, c	lad	lding,
electroplating a		,			C	,	U	0	U,		U,
UNIT – V	Phase Rule							Г	'otal Ho	our	s:12
	derivation of phase rule. Application to o	ne compo	ne	ent	sv	sten	ı - wate				
	s, condensed phase rule. Two component a	1			-				1	-	
Total Contact H	+	Total Pr				·····			'otal Ho		
Text Books		1000111	ac	uc		_145	5.0	1		Jui	5.00
	d Monika Jain, Engineering Chemistry, Dh	appat Bai	05	А	So-			h: 2010			
1. F.C. Jani an	d monika jani, Engineening Chemistry, Dii	anpat Kai	a11	u	301	15, 1	New Del	ui 2010			
Reference Boo	lks										
1. S. S. Dara, A	A Textbook of Engineering Chemistry, S. C	Chand & C		, L	.td.	Ne	w Delhi.	, 2008.			
	na, Engineering Chemistry, 3 rd edition Krish								t, 2001		
	and A. Ravi Krishnan "Engineering Cher						· · · ·		·	Che	ennai,
	murthy, P. Vallinayagam and D. Madhavar	. Enginee		10	Ch	em:	stry 2nd	edition	рыт т	00	rning
$-\tau$, $+N$, $N \cup N $	HULLIV, F. VAIIIIAVAPAIII AHU IJ. MAUHAVAI	т. тупушес									лини
	, New Delhi, 2008	.,		1g	Cn	iciiii	stry, 2	cuntion		ла	8

Department :	<u> </u>	<u>.</u>	ne : B. 7	ſech.	Civil Eng	gineering	5	
Course	Semester I		irs / We	aalz	Credit	M	aximum I	Marles
Code	Course Name	L	T	Р	Ciedat	IA	UE	Total
T 104	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	3	1	0	4	25	75	100
Objective (s	transistor, logic gates and flip flops.3. To gain knowledge on various commu of ISDN	unction	d the o s and	operat appli	ting print	ciples o of PN	of station junction	nary and n diode,
TINIT/T T	PART A – Electric	ai				,	1 1 1 1 1	10
UNIT – I	DC Circuit			01				ours : 10
applications	f Voltage, Current, Power & Energy, circui – Simple Problems - Division of current in S esh methods of analysis of DC circuits. AC Circuit					star/de	lta conv	
	AC circuits – rms value, average value, form eal and reactive power – Power factor - Introdu neter method							
UNIT – III	Electrical Machines and Power Plants					,	Total Ho	ours : 10
Single phase thermal and l	romagnetic induction, Fleming's Right & Left h transformer and single phase induction motor (nydro generation (block diagram approach only PART – B - Electron	(Qualita).Funda	tive ap	proa	ch only)	- Simp d circui	le layout t breake	rs
UNIT – IV	Electronic Circuit							ours : 10
Transistor - Transistor as	ristics of diode - Half-wave rectifier and Full-w Construction & working - Input and outputs an Amplifier - Principle and working of H and working of JFET & MOSFET.	it chara	cteristi	ics o	f CB an	nd CE	configu	ration -
UNIT – V	Digital Electronics					,	Total Ho	ours:10
of Boolean e Subtractors.	bra – Reduction of Boolean expressions - De- expressions - Flip flops - RS, JK, T and D. C Sequential logic - Ripple counters and shift regi	Combin sters.	ational		0	adder,	Full ad	lder and
UNIT – IV	Communication and Computer S			-	. –			ours : 10
communicati	nmunication system – Analog and digital – Win on systems – Microwave, satellite, optical fib MAN and WAN – Circuit and packet switching	er and	cellula	r mo	bile syst			
Total Contac		, Fotal Pr				,	Total Ho	ours : 60
Text Books								
 Rajendra Edition, 2 Morris M 	D P and Nagrath I J, Basic Electrical Engineeri Prasad, "Fundamentals of Electronic En 2011 (For Unit IV) Iano, "Digital design", PHI Learning, Fourth E	igineerii dition, 2	ng", C 2008 (I	engag For U	ge learn Init V)	ing, N	ew Dell	hi, First
•	omasi, "Electronic Communication Systems- Education, 2004. (For Unit VI)	Fundar	nentals	The	ory Adv	vanced'	, Sıxth	Edition,

Reference Books

- 1. R.Muthusubramaniam, S.Salivahanan and K.A. Mureleedharan, Basic Electrical Electronics and Computer Engineering, Tata McGraw Hill, 2004..
- 2. J.B.Gupta, A Course in Electrical Power, Katson Publishing House, New Delhi, 1993.
- 3. David. A. Bell, "Electronic Devices and Circuits", PHI Learning Private Ltd, India, Fourth Edition, 2008
- 4. Donald P Leach, Albert Paul Malvino and Goutam Saha, "Digital Principles and Applications," 6th edition, Tata McGraw Hill Publishing Company Ltd., New Delhi,2008.
- 5. S.K. Sahdev, Fundamentals of Electrical Engineering and Electronics, Dhanpat Rai & Co, 2013.
- 6. Jacob Millman and Christos C. Halkias, "Electronic Devices and Circuits" Tata McGraw Hill,2008
- 7. R.L. Boylestad and L. Nashelsky, "Electronic Devices and Circuit Theory", PHI Learning Private Limited, Ninth Edition, 2008.
- 8. M.S.Sukhija and T.K.Nagsarkar, "Basic Electrical and Electronics Engineering", Oxford University Press, 2012

Department :		gramme	e : B. ′	Tech.	Civil Eng	ineerin	5	
Course	Semester I	Ноц	rs / W	Veek	Credit	Ma	iximum I	Marks
Code	Course Name	L	T	P	C	IA	UE	Total
T 105	ENGINEERING THERMODYNAMICS	4	25	75	100			
Objective (s)	 To understand the basics of the thermody To establish the relationship of these printing To develop methodologies for predicting To establish the importance of laws of the To explain the role of refrigeration and he To develop an intuitive understanding of solving practical problems in real work 	ciples the sy ermod eat pur f unde	to the stem ynam mp as	ermal beha iics ap ener	l system l vior pplied to gy system	energy ns	systems	
UNIT – I	Basic Concepts and Definitions						Total H	lours:9
	rersion and efficiencies - System, property and stat nodynamics – P, V, and T Diagrams, - Thermody				ilibrium -	Temp	erature -	Zeroth
UNIT – II	First Law of Thermodynamics						Total H	lours:9
	of work and adiabatic process - First law of ther ad open systems - Calculation of work for differen							orinciple
UNIT – III	Second Law of Thermodynamics						Total H	lours:9
	and the second law - Heat engines - Kelvin-Planc nd irreversible processes - Carnot principle - Claus					w of th	ermodyı	namics -
UNIT – IV	Gas Power Cycles						Total H	lours:9
	cycles: The air standard Carnot cycle - Air standa eir efficiencies	rd Ott	o cyc	le, die	esel cycle	, dual c	cycle and	Bryton
UNIT – V	Refrigeration Cycles and Systems						Total H	lours:9
	not cycle - COP - Vapor compression refrige cycle - Absorption refrigeration system - Liquifac) - Gas
Total Contae	ct Hours : 45 Total Tutorials : 15 To	tal Pra	ictical	l Clas	s:0	٢	Fotal Ho	ours : 60
Text Books								
1. Nag, P. Delhi,19	K., "Engineering Thermodynamics", 4 th edition, 95	Tata	Mc (Graw	Hill Pul	olishing	; Co. Lt	d., New
Reference I	Books							
 Burghard 1986. Huang, F 	P., "Thermodynamics", Tata Mc Graw Hill Publi lt, M.D., "Engineering Thermodynamics with A F.F., "Engineering Thermodynamics" 2 nd edition , Y.A. and Boles, M.A., "Thermodynamics - An Eng	pplica Macm	tions' iillan I	', 4 th Publi	edition, shing Co	Harpen .Ltd., N	r & Rov N.Y.,198	9.
2006	., "Thermodynamics", 4 th edition ,Mc Graw Hill, 1	_			,	,		

Department : (ivil Engineering Pro	gramme	е : В. Т	ech.	Civil Engi	neering		
	Semester I							
Course	Course Name	Hou	rs / W	leek	Credit	Ma	ximum N	Aarks
Code	Course manie	L	Т	Р	С	IA	UE	Total
T 106	COMPUTER PROGRAMMING	3	1	0	4	25	75	100
Objective (s)	 To introduce the basics of computers and To educate problem solving techniques. To impart programming skills in C langu To practice structured programming to structure programe progr	1age.						
UNIT – I							Total H	lours : 9
of computers	mputers – Block diagram of a Computer – Co - Hardware – Software – categories of So Network Structure - Internet and its serv	oftware	e – C)pera	ting Syst	em –	Applicat	tions of
Preparation of					e ta a j		P	
UNIT – II							Total H	lours : 9
	ing techniques – Program – Program develo	onment	cvcle	_ A	leorithm	design		
Pseudo code.	Introduction to C – History of C – Important I/O functions							
UNIT – III							Total H	lours : 9
	ing statements – branching and looping – a assing array to functions . Storage classes – Str	2				-	– Fund	ctions –
UNIT – VI	assing array to runctions . Storage classes — Sti	11185	Jung	nora	ry runeux	5115	Total H	lours : 9
	Arrays and Structures – nested structures – pa	issino s	tructu	ires t	o functio	ns – 11		
	Pointers – pointers and arrays – pointers an	0						
UNIT – V							Total H	lours : 9
	ons on a file – Random access to files – comm - Macro substitution directives – File inclusion directives							ctives –
Total Contact	Hours: 45 Total Tutorials: 15 To	otal Pra	ctical	Class	s:0	٢	Fotal Ho	ours : 60
Text Books								
1. Balagurus	amy. E, "Programming in ANSI C", Tata McG	raw Hi	ill, 12 ^t	^h Edi	tion, 201	2		
Reference Bo								
1. Vikas Ver	ma, "A Workbook on C ",Cengage Learning, S	econd	Editio	on,20	12			
	Kamthane, "Computer Programming", Pearso					ssion, 2	2008.	

Department	: Civ	il Engineering		Programm	Programme : B. Tech. Civil Engineering								
			Semes	ster I									
Course			Course Name	Ho	urs	s / We	eek	Credit	Ma	iximum N	Iarks		
Code				L		Т	Р	С	IA	UE	Total		
P 101	CC	MPUTER P	ROGRAMMING LAB	0		0	3	2	50	50	100		
Objective (2		nd understand the use of C										
Objective (יי	2. To gain a h	ands on experience of cor		de	execu	ition	of 'C' pr	ograms	5			
			List of E	xercises									
1. Stu	dy of	OS Command	ds										
2. Wr	te a	C program to f	find the Area of the triangl	e.									
3. Wr	te a	C program to f	find the total and average p	percentage o	bt	ained	l by a	student	for 6 s	ubjects.			
4. Wr	te a	C program to r	read a three digit number a	and produce	οι	utput	like						
	1 hu	ndreds											
	7 ter	18											
	2 un	its for an input	t of 172.										
5. Wr	te a	C program to c	check whether a given char	racter is vow	zel	orno	ot usi	ing Switc	:h – Ca	se staten	nent.		
6. Wr	te a	C program to p	print the numbers from 1 t	to 10 along v	wit	th the	eir sq	uares.					
		1 0	find the sum of 'n' number	0 .					ts.				
		1 0	find the factorial of a given		<u> </u>	_							
:		1 0	swap two numbers using c				2	eference.					
1		1 0	find the smallest and larges		i ai	n arra	ay.						
			perform matrix multiplicat										
			demonstrate the usage of I										
			perform various string han					trcpy, str	cat, str	cmp.			
		1 0	emove all characters in a s	0 1		1							
		1 0	find the sum of an integer	, 01	-								
		1 0	find the Maximum element	0		array	usin	g pointer	s.				
			create student details using										
			display the contents of the										
:		. 0	ng the input from the key	yboard and	re	etrieve	e the	content	s of th	ne file us	ing file		
1		n commands.											
		·····	pass the parameter using co										
Total Cont	ict H	lours : 0	Total Tutorials : 0	Total Pr	ac	tical (Class	: 45	٢	Гotal Ho	urs : 45		

Department :			: B. T	ech.	Civil Engi	neering	5	
	Semester I		/				• • • •	
Course	Course Name	Hour		· •	Credit	Ş	aximum N	
Code		L	<u> </u>	P	C	IA	UA	Total
P 102	ENGINEERING GRAPHICS	2	0	3	2	25	75	100
Objective (s)	To convey the basics of engineering drawing							
, , ,	To explain the importance of an engineering		-					
	To teach different methods of making the dr		, ,					
	To establish the importance of projects and		pmen	its m	ade in di	awing	that are	used in
	real systems	-	•			0		
	To explain the role of computer aided design	_Auto (Cad					
	To develop an intuitive understanding of und	lerlying	signif	icanc	e of usin	g these	e drawing	<u>r</u> s
UNIT								
Introduction	n to Standards for Engineering Drawing practice	, Letteri	ng, L	ine w	ork and	Dimen	sioning	
UNIT – I								
Conic sectio	ns, Involutes, Spirals, Helix. Projection of Point	s, Lines	and l	Plane	S			
UNIT – II								
Projection o	f Solids and Sections of Solids							
UNIT – III	L							
Developmer	nt of surfaces - Intersection of surfaces (cylinder	-cylinde	r, cyli	nder	-cone)			
UNIT – IV								
Isometric pr	ojections and Orthographic projections							
UNIT – V								
Computer A	Aided Drafting: Introduction to Computer Aid	ed Draf	ting	hardv	ware - O	verviev	w of app	olication
software - 2	D drafting commands (Auto CAD) for simple sl	hapes - I	Dime	nsior	ning			
Total Conta	ct Hours : 30 Total Tutorials : 0 To	otal Prac	ctical	Class	s : 45		Total Ho	ours : 75
Text Books	\$							
1. Gopalak	rishna K.R. and Sudhir Gopalakrishna, Enginee	ring Gra	aphics	s, Inz	inc Publi	shers, 2	2007.	
Reference l	Books							
1. Bhatt N	D., Engineering Drawing, 49th edition, Chorotan	r Publisł	ning I	House	e, 2006.			
2. Venugo	pal K., Engineering Drawing and Grahics +	Auto C	AD,	$4^{th} \epsilon$	edition, N	New A	.ge Inter	national
Publicat	ion Ltd., 2004 .							
	cook and Robert N Mc Dougal, Engineering (Graphics	s and	Des	ign with	compu	iter appli	cations,
	ounders Int. Edn. 1985.							
2	Bethune and et. al., Modern Drafting, Prentice		· ·					
,	n K.V., A Text Book of Engineering Drawing,	Dhanala	ıkshn	ni Pu	blishers, 1	2006. I	BIS, Eng	ineering
	g practice for Schools & College, 2006.							
6. BIS. Eng	pineering Drawing practice for Schools & Colleg	re 1992						

6. BIS, Engineering Drawing practice for Schools & College, 1992.

	vil Engineering Pro Semester I	ogramm	e : B. '.	Гесh.	Civil Eng	ineering	7		
Course		Hou	rs / W	7eek	Credit	Ma	iximum I	Marks	
Code	Course Name	L T P C IA UE							
P103 B	ASIC ELECTRICAL AND ELECTRONICS LAB	0	0	3	2	50	50	100	
Objective (s)	 To get an exposure on the basic electrica To gain training on different types of wi To detect and find faults in electrical lan To get an exposure on the measurer operation and applications of devices su To gain a practical knowledge on the filip flops 	ring use op and o nents oc ch as P unction	ed in c ceiling of vol N jun s and	lome g fan ltage ction appl	stic and i and pha diode an	ndustri ise usi id trans	ial applio ng CR(sistor	D, basic	
	Electrical Laboratory I		nents	3					
 Practice Wiring Staircas Doctor Bed roo Godow Wiring Study c Study c (b) Verification Charaction Frequestion Study c 	cal Safety, Precautions, study of tools and acce es of different joints. and testing of series and parallel lamp circuits. wiring. 's room wiring. om wiring. and testing a ceiling fan and fluorescent lamp of different types of fuses, circuits breakers and Electronics Laboratory of CRO Measurement of AC and DC voltages Frequency and phase measurements (using L ation of Kirchoff's Voltage and Current Laws nine the voltage and current in given circuits us perimentally. teristics and applications of PN junction diode ward and Reverse characteristics of PN junction dication of Diode as Half wave Rectifier – Meas or filter ncy Response of RC Coupled Amplifiers nination of frequency response of given RC co of Logic Gates Verification of truth tables of OR, AND, NO oflops - JK, RS, T and D Implementation of digital functions using logi	circuit. l A.C a Experi issajou' sing Kin sing Kin n diode suremen upled a T, NAI	ment s figur choff nt of 1 mplif	res) ?'s lav fipple fier - (JOR,	ws theore factor w Calculatic EX-OR	rith and on of b	l withou andwidt	t h.	

SECOND SEMESTER

Department : (Civil Engineering	Programm	e : B. 7	ſech.	Civil Eng	ineering	5	
Course	Semest		ars / W	/eek	Credit	Ma	iximum I	Marks
Code	Course Name	L	Т	Р	С	IA	UE	Total
T 107	MATHEMATICS – II	3	1	0	4	25	75	100
Objective (s)	 To develop the use of matrix algebra To introduce the concepts of Curcalculus which is needed for many a To introduce Laplace transform where problems and to solve differential a To acquaint the students with For situations in which the functions used to solve the students used to solve the s	rl, Divergen application p hich is a use nd integral e ourier transf	nce an problem ful te equation	nd in ms. chnic ons. techr	itegration	n of ve lving n	ectors in nany app	olication
UNIT – I	Matrices	P					Total H	Iours : 9
Eigenvectors. canonical forr UNIT – II	and Eigen vectors of a real matrix, Cha Cayley-Hamilton Theorem, Diagonalizat n by orthogonal transformation. Nature of Vector Calculus ergence and curl, their properties and relat	ion of mati quadratic fo	rices. orms	Red	uction o	of a qu	adratic Total H	form to Iours : 9
(without proo	f). Simple application problems							
UNIT – III	Laplace Transform						Total H	Iours : 9
	ransforms of elementary functions, pro- by t and division by t. Transform of unit e theorems							ntegrals. s. Initial
UNIT – IV	Applications of Laplace Transform						Total H	Iours : 9
	r determining inverse Laplace Transform integral equations. Evaluation of integrals				em, App	olication	n to dif	ferential
UNIT – V	Fourier Transform						Total H	Iours : 9
0	ral theorem (statement only), Fourier tra rms, their properties, convolution and Par			nvers	e, prope	rties. F	ourier s	ine and
Total Contact	Hours : 45 Total Tutorials : 15	Total Pra	actical	Clas	s:0	٢	Fotal Ho	ours : 60
Text Books								
	man M.K, Engineering Mathematics The N ny P. et al, Engineering Mathematics, Vol.2			0	1 .		, 2012.	
Reference Bo	ooks							
 Grewal B. Ramana B Erwin Kre 	n T., Engineering Mathematics for first yea S., Higher Engineering Mathematics, Khar S.V., Higher Engineering Mathematics, Tata eyszig, Advanced Engineering Mathematics and Goyal M., Advanced Engineering Math n, 2010	nna Publishe a McGraw H s, John Wile	ers, Ne Hill Ne y & Se	ew D ew D ons, I	elhi,41st elhi, 11th New Del	Edition 1 Reprin hi.	n, 2011. nt, 2010.	

Course Code Course Name Hours / Week Credit Maximum Marks I 108 MATERIAL SCIENCE 4 0 0 4 25 75 100 I 108 MATERIAL SCIENCE 4 0 0 4 25 75 100 Objective (s) 1 To understand the importance of Material Science as a subject that revolutionize modern day technologies 2 To understand the significance of material science in the development of new material and devices for all branches of Engineering 3 To impart knowledge to the Engineering students about some of the important areas o Materials Science so as to enable them perceive the significant contributions of th subject in Engineering and Technology UNIT - I Crystal structure and Defects Total Hours 1 Crystal structures – Miller Indices- Powder X Ray Diffraction Method Lattite defets – Qualitativ ideas of point, line, surface and volume defects Total Hours 1 Dielectric Polarization and Mechanism – Temperature dependence of polarization, Internal or local Heid Chausinus Masses Total Hours 1 Dielectric constant and loss using Scherring bridge – Elementary Ideas of Elescific on and the magnetion and the properties of Picroclectric science of the dielectric constant and loss using Scherring bridge – Elementary Ideas of Cassification of rangenet materials (Dia, Para,	Department : Ci	vil Engineering	Semester	Programm r II	e : B.	Tech.	Civil Eng	gineerin	g	
Code Course Name I. T P C IA UE Tota T108 MATERIAL SCIENCE 4 0 0 4 25 75 100 Objective (s) 1 To understand the importance of Material Science as a subject that revolutionize modern day technologies 2. To understand the significance of material science in the development of new material and devices for all branches of Engineering 3. To impart knowledge to the Engineering students about some of the important areas o Material Science so as to enable them perceive the significant contributions of th subject in Engineering and Technology UNIT - I Crystal structure and Defects Total Hours : 1 Total Hours : 1 Orgatal imations Indices - Powder X Ray Diffraction Method Lattite defett - Qualitativ ideas of point, Inc, surface and volume defects Total Hours : 1 UNIT - II Dielectric properties Total Hours : 1 Total Hours : 1 Dielectric Mossotti relation. Basic ideas of Dielectric loss - frequency dependence of dielectric constant 4 May perceed and percee	Course		bennester		rs / V	Week	Credit	Ma	ximum	Marks
1. To understand the importance of Material Science as a subject that revolutionize modern day technologies 0bjective (s) 3. To impart knowledge to the Engineering students about some of the important areas o Materials Science so as to enable them perceive the significant contributions of th subject in Engineering and Technology UNIT -1 Crystal structure and Defects Total Hours : 1 <i>Crystal structure</i> and Defects Total Hours : 1 <i>Crystal structure</i> and Neckets Total Hours : 1 Dielectric Polarization and Mechanism -Temperature dependence of polarization, Internal or local Field Total Hours : 1 Dielectric Polarization and Mechanism -Temperature dependence of polarization, Internal or local Field Clausius-Mossotti relation. Basic ideas of Dielectric loss - frequency dependence of dielectric constant - Measurement of Dielectric materials and Applications UNIT - III Magnetic Properties Total Hours : 1 Origin of atomic magnetic moment – Bohr magneton-Elementary Ideas of classification of magneti materials (Dia, Para, Ferro, antiferro & Ferr) – Quantum theory of Para & Ferro Magnetism - Domai Theory of Hystersis – Heisenberg Theory of Exchange Interaction (without derivation) – Qualitative idea of Anti ferromagnetic Ordering – Structure and Properties of Ferrites – Properties of Soft & Hard Magneti Materials – Applications Angenetic antion in intrinsic Semiconductors (Hard Magneti Materials – Application of Carrier concentration in intrinsic Semiconductors (Hard Magneti Materials – Application and extinsic semiconductors (Without derivations) - temperature dependence o		Course Name		L	Т	Р	С	IA	UE	Tota
Objective (s) inderstand the significance of material science in the development of new material and devices for all branches of Engineering 2. To understand the significance of material science in the development of new material and devices for all branches of Engineering 3. To impart knowledge to the Engineering students about some of the important areas o Materials Science so as to enable them perceive the significant contributions of th subject in Engineering and Technology UNIT - I Crystal structure and Defects Total Hours : 1 Grystal structure - Bravais Lattices , Crystal Systems - Coordination Number, Atomic Radius, Packing Facto for FCC & HCP structures - Miller Indices- Powder X Ray Diffraction Method Lattice defets - Qualitativ ideas of point, line, surface and volume defects Total Hours : 1 Dielectric Polarization and Mechanism -Temperature dependence of polarization, Internal or local Field Clausius-Mossotti relation. Basic ideas of Dielectric loss - frequency dependence of dielectric constant - Measurement of Dielectric constant and loss using Scherring bridge - Elementary ideas of Piezoelectrics Ferroelectrics and Pyroelectric materials and Applications UNIT - II Magnetic Properties Total Hours : 1 Origin of atomic magnetic moment - Bohr magneton-Elementary Ideas of classification of magneti materials (Ja, Para, Ferro, antiferro & Ferri) - Quantum theory of Para & Ferro Magnetism - Domain Theory of Hysteresis - Heisenberg Theory of Exchange Interaction (without derivation) - Qualitative ideas of conductors (Jualitative ideas of Electric conductors - Applications of Soft & Hard Magneti Materials - Applications of Carrier concentration in intrinsi	T 108	MATERIAL SCIEN	NCE	4	0	0	4	25	75	100
UNIT - I Crystal structure and Defects Total Hours : 1 Crystal structure - Bravais Lattices , Crystal Systems - Coordination Number, Atomic Radius, Packing Facto for FCC & HCP structures - Miller Indices- Powder X Ray Diffraction Method Lattice defects - Qualitativ ideas of point, line, surface and volume defects UNIT - II Dielectric properties Total Hours : 1 Dielectric Polarization and Mechanism -Temperature dependence of polarization, Internal or local Field Clausius-Mossotti relation. Basic ideas of Dielectric loss - frequency dependence of dielectric constant - Measurement of Dielectric constant and loss using Scherring bridge - Elementary ideas of Piezoelectrics Ferroelectrics and Pyroelectric materials and Applications UNIT - III Magnetic Properties Total Hours : 1 Origin of atomic magnetic moment - Bohr magneton-Elementary Ideas of classification of magneti materials (Dia, Para, Ferro, antiferro & Ferri) Quantum theory of Para & Ferro Magnetism - Domai Theory of Hysteresis - Heisenberg Theory of Exchange Interaction (without derivation) - Qualitative idea of Anti ferromagnetic Ordering - Structure and Properties of Ferrites - Properties of Soft & Hard Magneti Materials - Applications. Magnetic data storage - Magnetic tapes, Hard disks, Magneto optical recording UNIT - IV Semiconductors and superconductors Total Hours : 1 Semiconductors - Application of Carrier concentration in intrinsic Semiconductors -Basic ideas of Electric conductivity in intrinsic and extrinsic semiconductors (without derivations) -temperature dependence o carrier concentration and electrical conductivity in semiconductors (qu	Objective (s)	 modern day technologie 2. To understand the signiand devices for all brance 3. To impart knowledge to Materials Science so as 	ficance of m thes of Engine the Engine to enable t	aterial scie neering ering stude them perc	ence i	in the bout s	develop ome of	ment of the imp	of new 1 portant	material areas o
for FCC & HCP structures – Miller Indices- Powder X Ray Diffraction Method Lattice defects – Qualitativ ideas of point, line, surface and volume defects Total Hours : 1 Dielectric Polarization and Mechanism –Temperature dependence of polarization, Internal or local Field Clausius-Mossotti relation. Basic ideas of Dielectric loss - frequency dependence of dielectric constant - Measurement of Dielectric constant and loss using Scherring bridge – Elementary ideas of Piezoelectrices Ferroelectrics and Pyroelectric materials and Applications UNIT – III Magnetic Properties Total Hours : 1 Origin of atomic magnetic moment – Bohr magneton-Elementary Ideas of classification of magneti materials (Dia, Para, Ferro, antiferro & Ferri). – Quantum theory of Para & Ferro Magnetism – Domai Theory of Hysteresis – Heisenberg Theory of Exchange Interaction (without derivation) – Qualitative idea of Anti ferromagnetic Ordering – Structure and Properties of Ferrites – Properties of Soft & Hard Magneti Materials – Applications. Magnetic data storage – Magnetic tapes, Hard disks, Magneto optical recording UNIT – IV Semiconductors and superconductors (without derivations) - temperature dependence o carrier concentration of Carrier concentration in intrinsic Semiconductors (Harus), Hall effect in Semiconductors – Application of Hall Effect, Basic Ideas of Compound Semiconductors (II-VI & III-V) Superconductivity - Basic concepts – transition temperature – Meissener effect – Type I and II superconductor – High Terve Advanced Materials Total Hours : 1. Liquid Crystals – Types – Application as Display Devices Metallic Glasset – Types – Application as Display Devices Metallic Glasset – preparation by melt spinning. Twin roller system, properties and applications Shape Memory alloys (SMA), Shape memory effect, Properties and applications of SMA Nanomaterials. Nano materials (one, Two & three Dimensional) – Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of S	UNIT – I	Crystal structure and Defe	ects					7	fotal H	ours:1
UNIT - III Magnetic Properties Total Hours : 1. Origin of atomic magnetic moment – Bohr magneton-Elementary Ideas of classification of magneti magnetication of magnetic magnetic moment – Bohr magneton-Elementary Ideas of classification of magnetism – Domain Theory of Hysteresis – Heisenberg Theory of Exchange Interaction (without derivation) – Qualitative idea of Anti ferromagnetic Ordering – Structure and Properties of Ferrites – Properties of Soft & Hard Magnetis Materials – Applications. Magnetic data storage – Magnetic tapes, Hard disks, Magneto optical recording UNIT – IV Semiconductors and superconductors Total Hours : 1. Semiconductors - Derivation of Carrier concentration in intrinsic Semiconductors – Basic ideas of Electrica conductivity in intrinsic and extrinsic semiconductors (without derivations) - temperature dependence o carrier concentration and electrical conductivity in semiconductors (qualitative ideas), Hall effect in Semiconductors – Application of Hall Effect, Basic Ideas of Compound Semiconductors (II-VI & III-V) Superonductivity - Basic concepts – transition temperature – Meissener effect – Type I and II superconductor – High Temperature Superconductors – 123 superconductor – Applications of superconductors. UNIT - V Advanced Materials Total Hours : 1. Liquid Crystals – Types – Application as Display Devices Methods of SMA Nanomaterials (one, Two & three Dimensional) –Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes synthesis, Properties and applications Total Contact Hours : 60<	UNIT – II Dielectric Pola Clausius-Mosso Measurement o	Dielectric properties rization and Mechanism –Te otti relation. Basic ideas of I of Dielectric constant and los	mperature d Dielectric los ss using Sch	s - freque erring bric	ncy	depend	lence o	nternal f dieleo	or loca ctric co	l Field nstant -
materials (Dia, Para, Ferro, antiferro & Ferri). – Quantum theory of Para & Ferro Magnetism – Domain Theory of Hysteresis – Heisenberg Theory of Exchange Interaction (without derivation) – Qualitative idea of Anti ferromagnetic Ordering – Structure and Properties of Ferrites – Properties of Soft & Hard Magneti Materials – Applications. Magnetic data storage – Magnetic tapes, Hard disks, Magneto optical recordingUNIT – IVSemiconductors and superconductorsTotal Hours : 1Semiconductors - Derivation of Carrier concentration in intrinsic Semiconductors – Basic ideas of Electrica conductivity in intrinsic and extrinsic semiconductors (without derivations) - temperature dependence of carrier concentration and electrical conductivity in semiconductors (qualitative ideas), Hall effect in Semiconductors Application of Hall Effect, Basic Ideas of Compound Semiconductors (II-VI & III-V) Superconductivity - Basic concepts – transition temperature – Meissener effect – Type I and II superconductor – High Temperature Superconductors – 123 superconductor – Applications of superconductors.UNIT – VAdvanced MaterialsTotal Hours : 1.Liquid Crystals – Types – Application as Display Devices Metallic Glasses – preparation by melt spinning. Twin roller system, properties and applications Shape Memory alloys (SMA), Shape memory effect, Properties and applications of SMA Nanomaterials- Nano materials (one, Two & three Dimensional) –Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes- synthesis, Properties and applicationsTotal Hours : 0Total Tutorials : 0Total Practical Class : 0Total Hours : 60Total Tutorials : 0Total Practical Class : 0	Ferroelectrics a	- -	Applications	5				7	fotal He	ours:1
Semiconductors - Derivation of Carrier concentration in intrinsic Semiconductors - Derivation of Carrier concentration in intrinsic Semiconductors - Lemperature dependence of carrier concentration and electrical conductivity in semiconductors (qualitative ideas), Hall effect in Semiconductors Application of Hall Effect, Basic Ideas of Compound Semiconductors (II-VI & III-V)Superconductivity - Basic concepts - transition temperature - Meissener effect - Type I and II superconductors- High Temperature Superconductors - 123 superconductor - Applications of superconductors.UNIT - VAdvanced MaterialsLiquid Crystals - Types - Application as Display DevicesMetallic Glasses - preparation by melt spinning. Twin roller system, properties and applicationsShape Memory alloys (SMA), Shape memory effect, Properties and applications of SMANanomaterials- Nano materials (one, Two & three Dimensional)Methods of synthesis (PVD, CVD, LaseAblation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes:Synthesis, Properties and applicationsTotal Hours : 60Total Tutorials : 0Total Practical Class : 0Total Hours : 60	Theory of Hys of Anti ferrom	teresis – Heisenberg Theory of agnetic Ordering – Structure	of Exchange and Properti	Interactio es of Ferri	n (wi tes –	ithout Prope	derivation ties of	on) – (Soft &	Qualitat Hard N	ive idea Magneti
conductivity in intrinsic and extrinsic semiconductors (without derivations) -temperature dependence of carrier concentration and electrical conductivity in semiconductors (qualitative ideas), Hall effect in Semiconductors Application of Hall Effect, Basic Ideas of Compound Semiconductors (II-VI & III-V)Superconductivity - Basic concepts transition temperature Meissener effect Type I and II superconductors High Temperature Superconductors 123 superconductor Applications of superconductors.UNIT - VAdvanced MaterialsUNIT - VAdvanced MaterialsLiquid Crystals Types Application as Display DevicesMetallic Glasses preparation by melt spinning. Twin roller system, properties and applicationsShape Memory alloys (SMA), Shape memory effect, Properties and applications of SMA Nanomaterials- Nano materials (one, Two & three Dimensional)Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes- synthesis, Properties and applicationsTotal Contact Hours : 60Total Tutorials : 0Total Practical Class : 0Total Hours : 6	UNIT – IV	Semiconductors and supe	rconductor	S]	fotal H	ours:1
Liquid Crystals – Types – Application as Display Devices Metallic Glasses – preparation by melt spinning. Twin roller system, properties and applications Shape Memory alloys (SMA), Shape memory effect, Properties and applications of SMA Nanomaterials- Nano materials (one, Two & three Dimensional) –Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes- synthesis, Properties and applications Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books	conductivity in carrier concen Semiconductor Superconductivity	intrinsic and extrinsic semi tration and electrical condu s Application of Hall Effec - Basic concepts – transition	conductors activity in s t, Basic Idea temperature	(without of emicondu s of Comp – Meissen	deriva ctors ounc er ef	ations) (qual l Semio fect – '	-tempe itative conduct Type I a	erature ideas), ors (II- and II s	depend Hall e VI & I upercor	dence o effect in II-V)
Metallic Glasses – preparation by melt spinning. Twin roller system, properties and applications Shape Memory alloys (SMA), Shape memory effect, Properties and applications of SMA Nanomaterials- Nano materials (one, Two & three Dimensional) –Methods of synthesis (PVD, CVD, Lase Ablation, Solgel, Ball-milling Techniques), Properties and applications of nanomaterials. carbon nanotubes- synthesis, Properties and applications Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books	UNIT – V	<u>i</u>						1	l'otal H	ours:1
	Metallic Glasses Shape Memory an Nanomaterials- 1 Ablation, Solge synthesis, Prop	- preparation by melt spinnin <i>loys (SMA)</i> , Shape memory ef Nano materials (one, Two & I, Ball-milling Techniques), P erties and applications	g. Twin rolle fect, Propert three Dimer properties and	ies and ap isional) –N d applicati	plicat Metho ons o	tions o ods of of nanc	f SMA synthes omateria	is (PV Ils. carl	D, CV bon nan	otubes
1. V Kajendran, Engineering Physics, 2nd Edition, TMH, New Delhi 2011.	Text Books				1			.i		
	1. V Rajendra	n, Engineering Physics, 2nd E	dition, TMH	, New Del	hi 20	11.				

Reference Books

- 1. Ali Omar M, Elementary Solid State Physics, Addison Wesley Publishing Co., 2009.
- 2. William D Callister Jr., Material Science and Engineering, 6th Edition, John Wiley and sons, 2009.
- 3. Charles Kittel, Introduction to Solid State Physics, 7th Edition, John Wiley & sons, Singapore, 2007.
- 4. V Raghavan , Materials Science and Engineering- A First Course, 5th Edition, Prentice Hall of India, 2008.
- 5. B.S. Murty, P. Shankar, Baldev Raj, B.B. Rath, and James Murday, Text book of Nanoscience and Nanotechnology, Universities Press, Hyderabad 2012
- 6. M.N. Avadhanulu, Enginerring Physics- Volume-II, S.Chand &Co, New Delhi, 2009
- 7. Pillai S.O, Solid State Physics, 6th Edition New Age International, 2005.

Course Code Course Name Hours / Week Credit I. Maximum Marks Course T109 ENVIRONMENTAL SCIENCE 4 0 4 25 75 100 Objective (s) 1. To know about the environment apply the knowledge in understanding various environmental issues and problems UNIT - I Environment And Energy Resources Total Hours 1 Environment and Exergy Resources – use and conflicts over water, dams – benefits an problems. Mineralresources – mineral weath of India, environmental effects of extracting and using miner resources. Food resources – mineral weath of India, environmental effects of extracting and using miner resources. Food resources – growing needs, renewable and non-renewable energy resources and use a alternate energy sources. From unsustainable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours 1 Concept of an ecosystem. Biodiversity – definition, genetic species and ecosystem diversity. Value c biodiversity – consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots c biodiversity – consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots c biodiversity. Threats to biodiversity, habitat loss, poaching of Wildlife, human wildlife conflicts. Endangeer and endemic species. Conservation of biodiversity – UNIT - III I Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sourese, effects and control measures of air pollutants - oxides of	Department : Cir	vil Engineering Prog Semester II	gramme	: B. Te	ch. (Civil Engi	ineering		
Code Course Name I T P C IA UE Tora T 109 ENVIRONMENTAL SCIENCE 4 0 0 4 25 75 100 Objective (8) 2. To understand about environmental pollution 3. To apply the knowledge in understanding various environmental issues and problems UNIT - I Environment And Energy Resources Total Hours : 1 Environmental segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Total Hours : 1 Pollution definition and classification. Forest resources – use and over exploitation deforestation, forest management. Water resources – nevronmental effects of extracting and using miner resources. Food resources – mordi food problems, environmental impact of modern Agriculture – fertiliz and pesticides. Energy resources – growing needs, renewable and non-renewable energy resources and use c alternate concept of an ecosystem – structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the cosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, gneetic species and ecosystem (surosphere. Cause and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity. Value c Diodiversity - tosu Buotyic use, produ	Course		Hours	. / Wei	-k	Credit	Mar	ximum N	larks
T 109 ENVIRONMENTAL SCIENCE 4 0 0 4 25 75 100 Objective (8) 2. To understand about the environmental pollution 3. To apply the knowledge in understanding various environmental issues and problems UNIT -1 Environment And Energy Resources Total Hours : 1 Total Hours : 1 Environmental segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Pollution definition and classification. Pollutants classification. Forest resources – use and over exploitation definition and classification. Pollutants classification. Forest resources – use and over exploitation definition and classification. Forest resources – use and conflicts over water, dams – benefits an problems. Mineralresources – mineral wealth of India, environmental impact of modern Agriculture – Critika and pesticides. Energy resources – From unsustainable to sustainable development. UNIT -II Ecosystem & Biodiversity UNIT -1 I Ecosystem & Biodiversity — odd finition of forest, grassland, desert and aquite (fresh wate esturine and marine) ecosystem. Sindiversity – effinition, genetic species and cosystem diversity. Value c biodiversity - tonsumptive use, productive use, social, ethical, aesthetic and option values. Hot spots obiodiversity - tonsumptive use, productive use, social, ethical, aesthetic and option values. Hot spots obiodiversity - total Hours : 1 UNIT -1 II Air Pollution — Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers	1	Course Name		·····			······································		,
1. To know about the environment Objective (s) 2. To understand about environmental pollution 3. To apply the knowledge in understanding various environmental issues and problems UNIT - 1 Environment And Energy Resources Environmental segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Pollution definition and classification. Prosert resources – use and over exploitator deforstation, forest management. Water resources – use and conter exploitator appoblems. Mineralresources – mineral wealth of India, environmental effects of extracting and using miner resources. Food resources – world food problems, environmental impact of modern Agriculture – fertiliz and pesticides. Energy resources = growing needs, renewable and non-renewable energy resources and use c alternate energy sources. From unsustanable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem. Studiversity – definition, genetic species and ecosystem diversity. Value c biodiversity. Threats to biodiversity – in-situ and ex-situ conservation of biodiversity UNIT - III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - socides of Nitrogen, oxides of Carbon, oxides c		ENVIRONMENTAL SCIENCE	-++						
Objective (s) 2. To understand about environmental pollution 3. To apply the knowledge in understanding various environmental issues and problems UNIT - I Environment And Energy Resources Total Hours 1 Environment And Energy Resources Longentary and effects of extracting and using miner resources – use and conflicts over water, dams – benefits an problems. Mineralesources – moral food food problems, environmental effects of extracting and using miner resources. Food resources – growing needs, renewable and non-renewable energy resources and use or alternate energy sources. From unsustainable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest grassland, desert and aquatic (fresh wate sources). Conservation of biodiversity – definition, genetic species and ecosystem diversity. Value or biodiversity – consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots or biodiversity – IT all Pollution UNIT - III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of air pollutons : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects a	1 100		<u> </u>		0	•	20	15	100
3. To apply the knowledge in understanding various environmental issues and problems. UNIT - I Environment And Energy Resources Total Hours : 1 Environment al segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Pollution definition and classification. Pollutants classification. Forest resources – use and over exploitation deforestation, forest maragement. Water resources – use and conflicts over water, dams – benefits an problems. Mineralresources – mioral wealth of India, environmental effects of extracting and using miner resources. From unsustainable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem. Sincuture and function of an ecosystem.Producers, consumers, an decomposers. Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and option values. Hot spots to biodiversity. Threats to biodiversity, habiat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity. UNIT - III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants – oxides of Nitrogen, oxides of Carbon, oxides of Sulfu, hydrocarbons, chloro-fluoro carb	Objective (s)		ution						
UNIT - 1 Environment And Energy Resources Total Hours : 1 Environmental segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Pollution definition and classification. Forest resources – use and over exploitation deforestation, forest management. Water resources – use and conflicts over water, dams – benefits an problems. Mineralresources – mineral wealth of India, environmental effects of extracting and using miner resources. Foor unsustainable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem. From unsustainable to sustainable development. UNIT - II Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an a decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquati (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value c biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots c Didiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots c biodiversity Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides c Sufferent layers of air pollutors : 1 Definition and classification	Objective (s)				000	nontal in		d n roblo	100 G
Environmental segments – atmosphere, hydrosphere, lithosphere and biosphere. Atmospheric layer Pollution definition and classification. Pollutants classification. Forest resources – use and conflicts over water, dams – benefits an problems. Mineralresources – wind food problems, environmental impact of modern Agriculture – fertilize and pesticides. Energy resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem – structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) coosystems. Biodiversity – definition, genetic species and coosystem diversity. Value c biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots c biodiversity - thrats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides C Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – pesticides in conticides det	τιντή τ		; vanous		OIII			·····	
Pollution definition and classification. Pollutants classification. Forest resources – use and over exploitation deforestation, forest management. Water resources – use and conflicts over water, dams – benefits an problems. Mineralresources – moral wealth of India, environmental effects of extracting and using miner resources. Food resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers. Energy flow in the cosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquate (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value obiodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots obiodiversity - threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity. UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of Air pollutors : 1 Total Hours : 1 Outro – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog. UNIT – IV Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of ongranic water pollutants – becay metal pollution due to Hg. Pb, Cr & Ca Water pollution – causes, effect and			1	1	1.	1			
deforestation, forest management. Water resources – use and conflicts over water, dams – benefits an problems. Mineralresources – mineral wealth of India, environmental effects of extracting and using miner resources. Food resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate ssturine and marine) ecosystems. Biodiversity – definition, gneetic species and ecosystem diversity. Value obiodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots obiodiversity - In-situ and ex-situ conservation of biodiversity UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phonomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog. UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of environmental Sudics'' 2 nd edition, Scitech Publications, Index and and industrial wastes. Thermal and radioactiv pollution Total Hours : 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>2</td>								1	2
problems. Mineralresources – mineral wealth of India, environmental effects of extracting and using miner resources. Food resources – world food problems, environmental impact of modern Agriculture – fertilizand pesticides. Energy resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, and decomposers. Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value of biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity. Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution - causes, and effects of organic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv Bollutan - Solid wast management – causes, effect and control measures								-	
resources. Food resources – world food problems, environmental impact of modern Agriculture – fertiliza and pesticides. Energy resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem. Producers, consumers, an decomposers. Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value of biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots to biodiversity - biodiversity - in-situ and ex-situ conservation of biodiversity UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution jhenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr Wa		0							
and pesticides. Energy resources – growing needs, renewable and non-renewable energy resources and use of alternate energy sources. From unsustainable to sustainable development. UNIT – II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value or biodiversity. Threats to biodiversity habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endenic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity UNIT – III is Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurus Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Stal Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates for text Books 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2	1						0	0	
alternate energy sources. From unsustainable to sustainable development. UNIT - II Ecosystem & Biodiversity Total Hours : 1 Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value obiodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots obiodiversity - Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity UNIT - III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Salfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT - IV Water and Land Pollution Total Hours : 1 Water pollution - causes and effects of organic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution - control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60									
UNIT - IIEcosystem & BiodiversityTotal Hours : 1Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquate (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value of biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity - threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity UNIT - IIIAir PollutionTotal Hours : 1Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT - IVWater and Land PollutionTotal Hours : 1Water pollution - causes and effects of iorganic water pollutants - pesticides, insecticides, detergents an surfactants. Cause, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution upullutionTotal Hours : 1Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6Total Hours : 6Total Hours : 60Total Tutorials : 0Tot	1	e, e e .			ewat	ble energ	y resou	irces and	l use of
Concept of an ecosystem - structure and function of an ecosystem.Producers, consumers, an decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity - definition, genetic species and ecosystem diversity. Value of biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity - Intreats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity - in-situ and ex-situ conservation of biodiversity - UNIT - III Air Pollution		۲	velopm	ent.					
decomposers.Energy flow in the ecosystem. Food chains, food webs and ecological pyramids. Introduction types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value obiodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity. Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity UNIT – III Air Pollution Total and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Worter pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr. Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution – Good Total Tutorials : 0 Total Procestices : 0 Total Hours : 6 Total Hours : 6 Total Tutorials : 0 Total Procestices : 0 Total Hours : 6 Total Hours : 6 Total Tutorials : 0 Total Procestices : 0 Total Hours : 6 Subardon and particulates : 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008.									
 types, characteristic features, structure and function of forest, grassland, desert and aquatic (fresh wate esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value of biodiversity – consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity – Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity – UNIT – III Air Pollution — Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants – oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution — Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr Water pollution control and Monitoring — DO, COD, BOD & TOC. Land Pollution — Solid was management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring — Total Practical Class : 0 — Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 — Total Tutorials : 0 — Total Practical Class : 0 — Total Hours : 6 Text Books A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books<!--</td--><td>1</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td>	1			-					
esturine and marine) ecosystems. Biodiversity – definition, genetic species and ecosystem diversity. Value of biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity. Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemice species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity – UNIT – III Air Pollution Total Hours: 1 Total Hours: 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours: 1 Total Hours: 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours: 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOX, COX, SOX, H2S, Hydrocarbons and particulates Total Hours: 6 Text Books 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Concepts of environmental chemistry and pollution control, 5th Ed S.Chandand Company	1	, , , , , , , , , , , , , , , , , , ,				0 1	2		
 biodiversity - consumptive use, productive use, social, ethical, aesthetic and option values. Hot spots of biodiversity. Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangerer and endemic species. Conservation of biodiversity - in-situ and ex-situ conservation of biodiversity. UNIT - III Air Pollution Total Hours 11 Total Hours 11 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomeno – Global Warning, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT - IV Water and Land Pollution Total Polutants - pesticides, insecticides, detergents an surfactants. Causes and effects of iorganic water pollutants - pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants - heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT - V Pollution Control and Monitoring Total Hours 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books A.K. De, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental concepts of environmental chemistry, I Ed, Al	types, characte	ristic features, structure and function of for	est, gras	ssland,	, de	sert and	aquati	c (fresh	water
 biodiversity. Threats to biodiversity, habitat loss, poaching of wildlife, human wildlife conflicts. Endangere and endemic species. Conservation of biodiversity — in-situ and ex-situ conservation of biodiversity UNIT – III Air Pollution — Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollutio phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution — Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring — Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 Total Hours : 6 Total Tutorials : 0 — Total Practical Class : 0 — Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D.	esturine and m	arine) ecosystems. Biodiversity - definition, g	enetic s	pecies	and	l ecosyst	em div	ersity. V	'alue o
and endemic species. Conservation of biodiversity – in-situ and ex-situ conservation of biodiversity Total Hours : 1 UNIT – III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 Text Books Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. Environmental chemistry" 11th Ed, KRISHNA Prakashan	biodiversity - o	consumptive use, productive use, social, ethi	cal, aes	thetic	and	l option	values	. Hot s _j	pots o
UNIT - III Air Pollution Total Hours : 1 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT - IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution – causes, and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 Total Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6 nd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environ	biodiversity. The	nreats to biodiversity, habitat loss, poaching o	f wildlif	e, hur	nan	wildlife	conflic	ts. Enda	ingered
 Definition and classification. Chemical and photochemical reaction in different layers of atmosphere. Cause sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollutio phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT - IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT - V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 	and endemic sp	becies. Conservation of biodiversity - in-situ an	d ex-sit	u cons	erva	ation of l	biodive	rsity	
 sources, effects and control measures of air pollutants - oxides of Nitrogen, oxides of Carbon, oxides of Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollution phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ct Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 60 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lteres 	UNIT – III	Air Pollution					Т	'otal Ho	urs : 12
 Sulfur, hydrocarbons, chloro-fluoro carbons and particulates. Mechanism and effects of air pollutio phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Ci Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 61 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lternational Ltern	Definition and	classification. Chemical and photochemical re	action ii	n diffe	rent	t layers c	of atmo	sphere.	Causes
phenomenon – Global Warming, Ozone Depletion, Acid Rain, Sulfurous Smog and Photochemical Smog UNIT – IV Water and Land Pollution Total Hours : 1 Water pollution – causes and effects of organic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cr Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOX, COX, SOX, H2S, Hydrocarbons and particulates Total Hours : 6 Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. Publications, India Pvt. Ltd, New Delhi, 2006 Reference Books I B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lternational Lternational Lternational Lternational Lte	sources, effects	s and control measures of air pollutants - ox	ides of	Nitro	gen	, oxides	of Car	bon, ox	ides of
UNIT - IV Water and Land Pollution Total Hours : 1 Water pollution - causes and effects of organic water pollutants - pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants - heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring - DO, COD, BOD & TOC. Land Pollution - Solid wast management - causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT - V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants - NOX, COX, SOX, H2S, Hydrocarbons and particulates Total Hours : 0 Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6 rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S. Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lteter	Sulfur, hydroc	arbons, chloro-fluoro carbons and particula	ites. M	echani	sm	and eff	fects o	f air p	ollution
 Water pollution – causes and effects of organic water pollutants – pesticides, insecticides, detergents an surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lternational Lternational	phenomenon -	- Global Warming, Ozone Depletion, Acid Rain	n, Sulfui	cous Si	mog	g and Pho	otocher	nical Srr	nog
 surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lternational Lternational	UNIT – IV	Water and Land Pollution					Т	'otal Ho	urs : 12
 surfactants. Causes and effects of inorganic water pollutants – heavy metal pollution due to Hg, Pb, Cr & Cu Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lternational Lternational	Water pollution	n – causes and effects of organic water poll	utants –	- pesti	cide	es, insect	ticides,	deterge	nts and
 Water pollution control and monitoring – DO, COD, BOD & TOC. Land Pollution – Solid wast management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 	1	0 1		1				0	
 management – causes, effect and control measures of urban and industrial wastes. Thermal and radioactiv pollution UNIT – V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd" 	Water pollutio	n control and monitoring – DO, COD, H	30D &	: TOC	і. І. І	and Po	llution	– Solic	l waste
pollution UNIT - V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books 1 Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6 rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd									
UNIT - V Pollution Control and Monitoring Total Hours : 1 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2 nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6 rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd	0								
 Basic concepts and instrumentation of IR, UV-VIS, atomic absorption spectrometry, Gas Chromatograph and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 		Pollution Control and Monitoring					Ϋ́	otal Ho	$11rs \cdot 12$
 and Conductometry. Analysis of air pollutants – NOx, COx, SOx, H2S, Hydrocarbons and particulates Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 		, i	absorpt	ion sn	ectr	ometry			
 Total Contact Hours : 60 Total Tutorials : 0 Total Practical Class : 0 Total Hours : 6 Text Books 1. Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. 2. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books 1. B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. 2. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. 3. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 	1		1	1		2,2			017
 Text Books Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 				·····		•••••••	·····		
 Raghavan Nambiar K., "Text Book of Environmental Studies" 2nd edition, Scitech Publications, India Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 			, tai 1 1 ac		1400	• •	1	0121110	u13.00
 Pvt. Ltd, Chennai, 2008. A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 		Nambiar K "Text Book of Environmental S	tudies"	2 nd or	litio	n Sciter	h Dubl	lications	India
 A.K. De, "Environmental chemistry" 6rd edn; New age international (P) Ltd, New Delhi, 2006 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 			lucies	2 8	iiuo	ii, seitee	II FUDI	lications	, mula
 Reference Books B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 			tomation	a = 1 (D)	T ta	Now	alt 20	006	
 B.K. Sharma, "Environmental chemistry" 11th Ed, KRISHNA Prakashan Media (P) Ltd, Meerut, 2007. S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd. 			emanoi	iai (P)	LIC	I, INEW L	<i>y</i> enn, 20	,000	
 S.S.Dara, and D.D. Mishra "A text book of environmental chemistry and pollution control, 5th Ed S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd 					0 m 1	Madia /m	Γ+1 \	Toomst ?	007
 S.Chandand Company Ltd, New Delhi, 2012. Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd 									
 Richard T. Wright, Environmental Science: Toward a Sustainable Future, 10thedition, Prentice Hall, 2008 G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Lto 			ental ch	iemisti	ry a	na pollu	ition co	ontrol, 3	oth Ed
4. G. S. Sodhi, Fundamental concepts of environmental chemistry, I Ed, Alpha Science International Ltd		1 2	• 11	E .		⊳.1 1' .'	D		1 0000
		0							
India, 2000		-	emistry	, 1 Ed	, Al	pha Scie	ence Int	ternation	ial Ltd
	India, 2000								

Department : C	ivil Engineering Prog Semester II	gramm	e : B.	Tech.	Civil Eng	gineering	g	
Course		Ноц	rs / V	Veek	Credit	M	aximum l	Marks
Code	Course Name	L	T	Р	C	IA	UE	Total
T 110	BASIC CIVIL AND MECHANICAL ENGINEERING	4	0	0	4	25	75	100
Objective (s)	 To be able to differentiate the types of be To understand building components and roads, bridges and dams To explain the concepts of thermal symethods of harnessing renewable energies To explain the role of basic manufacturint To develop an intuitive understanding of machines and systems 	id their ystems is ig proc of und	ir fur s used cesses	nction d in	s as wel power f	l as di plants a	fferent t and nar	types of rate the
UNIT – I	Buildings, Building Materials	iiiig				+	Гotal Ho	. 10
	finition-Classification according to NBC-plinth	0400	Floor	0400	carpet			
	materials-stone, brick, cement, cement-mortar, o							
UNIT – II	Buildings and their components		, su	u-u	ien prop		Fotal Ho	
	rious Components and their functions. Soils an	d thair	· class	ificat	ion Four			
0	dations, Masonry Function and types, Floors-D							
UNIT – III	Basic Infrastructure					+	Fotal Ho	ours : 10
	ge and disadvantage. Bridges-components ar bes of dams and components. Water supply	-sourc	ces a		0		-	
	PART - B Mechanical Eng		ng					
UNIT – IV	Internal and external combustion system						Fotal Ho	
	Classification - Diesel and petrol engines: tw							
	n generators(Boilers) – Classification – Construings and accessories. Merits and .demerits- App			ures	(of only	low pro	essure b	oilers) –
UNIT – V	Power Generation Systems					٢	Fotal Ho	ours : 10
(Description (and Non-Conventional: Hydraulic – Thermal – Dnly) – Solar – Wind – Geothermal – Wave – T ic power plant schemes and layouts (Description	idal ar	nd Ôc	1			-	
ÚNIT – VI	Manufacturing Process					٢	Fotal Ho	ours : 10
Machines – La Machining Pro – Drawing – H Moulding and	athe – Drilling – Bending – Grinding – Shearing ocesses – Turning – Planning – Facing – Blankin Filing – Sawing – Grinding. Metal Joining - Pattern making – Green and dr lering (process description only).	ng – D	Drillin	g – Pı	unching	– Sheai	ring – Be	ending
Total Contact Text Books	Hours: 60 Total Tutorials: 0 To	otal Pra	actica	l Clas	s:0	+	Fotal Ho	ours : 60
	K V, Basic Civil Engineering, 11th Edition, I III)	hanal	akshr	ni Pu	blication	s Cher	nnai, 20	11. (For

2. Venugopal, K and Prabhu Raja, Basic Mechanical Engineering, Anuradha Publisher, 2012 (For Units IV to VI).

Reference Books

- 1. Purushothama Raj.P., Basic civil engineering, 3rd Edn., Dhanam Publications, Chennai, 2001
- 2. Rajput, R K, Engineering Materials, S Chand & Co. Ltd., New Delhi, 2012.
- 3. Punmia, B.C., et. al., Surveying, Vol-I, Laxmi Publishers, New Delhi, 2012.
- 4. Punmia, B.C., et.al Building Construction, Laxmi Publishers, New Delhi ,2012.
- 5. El.Wakil, M.M., Power Plant Technology, Mc Graw Hill Book Co., 1985.
- 6. Hajra Choudhry, et. al., Workshop Technology Vol I and II, Media Promoters Publishers Pvt. Ltd., Bombay, 2004.
- 7. Lindberg, R.A.Process and Materials of Manufacture, PHI, 1999.
- 8. H.N.Gupta, R.C.Gupta and Arun Mittal, Manufacturing Processes, New Age Publications, 2001
- 9. Nagpal, Power Plant Engineering, Khanna Publishers, Delhi, 1998.

Department : 0	Civil Engineering		gramm	e : B	. Tec	:h. (Civil En	gineer	ing				
Course		ester II	Hou	rs /	Wee	k	Credit	1	Max	kimum	Ma	irks	
Code	Course Name		L	13 / T		P	C	IA		UE	·····•	Total	
T 111	ENGINEERING MECHANICS	3	3	1		0	4	25		75		100	
Objective (s)	3. To understand the laws of motion, the kinematics of motion and the interrelationsh and to learn to write the dynamic equilibrium equation4. To emphasis the concepts through solved examples												
UNIT – I	Fundamental of Mechanics								,	Total I	Но	urs:9	
Transmissibil forces, Cond	ots Force System and Equilibrium, De ty, Varignon's theorem, Resultant of fo- tion of static equilibrium for coplanar oblems on static equilibrium of bodies	rce syst	em –	Con	curr	ent	and n	on-co	ncı	urrent	coj	planar	
UNIT – II	Practical Application of Force Syst	em							,	Total I	Но	urs:9	
Friction: Intro UNIT – III Properties of	es of loads, Analysis of Trusses-method o oduction, Static dry friction, simple conta Properties of Surfaces sections – area, centroids of lines, areas a	ct frictio	on pro imes,	bler mor	ns, la nent	add of	ers, we inertia	first r	nor		of in	nertia,	
second mome moment of in	ent of inertia and product moment of in ertia	ertia, po	olar m	ome	ent c	ot 11	nertia, i	adıus	of	gyratı	on,	mass	
UNIT – IV	Kinematics and Kinetics of Particle	es							,	Total I	Но	urs : 9	
Energy equat	motion - Rectilinear motion, curvelinear ion – Conservative forces and principle ect central impact and oblique central imp	le of co pact.											
UNIT – V	Kinematics and Kinetics of Rigid h	odies							,	Total I	Но	urs:9	
Plane motion and momentu	, Absolute motion, Relative motion, trans	slating a	xes ar	nd ro	otatii	ng a	axes, w	ork ar	nd e	energy	, in	ıpulse	
Total Contact	Hours: 45 Total Tutorials: 15	То	tal Pra	actic	al C	lass	:0		Т	'otal H	ou	rs : 60	
Text Books		1											
1. Rajesekar Ltd., 2012	an, S and Sankara Subramanian., G., En 	ngineeri	ng M	echa	nics	, V:	ikas Pu	ıblishi	ng	House	e F	rivate	
Reference B	ooks												
2. Beer, F.P. McGraw	my, M.S. Nagan, S., Engineering Mechan and Johnson Jr. E.R, Vector Mechani – Hill International Edition, 1997 J.S.S and K.G.Rajashekarappa, Engineer 0	cs for 1	Engin	eers,	Vo	1. 1	Static	s and	V	ol.2 D	yna	amics	

	: Civ	ril Engineering		Programme	e : B.]	ſech.	Civil Eng	ineering	5	
			Semest				•			
Course			Course Name		rs / W	····	Credit		ximum N	
Code				L	Т	Р	С	IA	UE	Total
T112		COMMUN	NICATIVE ENGLISH	4	0	0	4	25	75	100
		To improve t	he LSWR skills of I B.Tec	h students						
Objective ((s)	To instill con	fidence and enable the stu-	dents to con	nmun	icate	with ease	2		
		To equip the	students with the necessar	y skills and o	develo	op th	eir langu	ige pro	wess	
UNIT – I			nunication Theory						lotal Ho	
Importance	of	Communicat	ion – stages of commu	inication, n	nodes	of	commun	ication	– barı	iers to
		 strategies ective listening 	for effective communic skills	cation – L	isteni	ng: 1	mportan	ce, ty	pes, bar	riers –
UNIT – II		Comprehens]	lotal Ho	urs : 12				
Comprehen	ng, infer	ring-No	ote maki	ing and						
			cting and responding to co							0
UNIT – II	I	Writing		_		- Fotal Ho	urs : 12			
internet etc	-								- 1	
UNIT – IV	7	Business Wr	riting / Correspondence]	lotal Ho	urs : 12
Report write	ing -	- Memoranda ·	– Notice – Instruction – L	ottore Dog	umes	– Job	o applicat	tions		
UNIT – V		<u> </u>		etters - Kes						
Basics of p		Oral Comm	unication	etters – Kes				1	l'otal Ho	urs : 12
1			unication ntation skills – Group Di			ogue	writing			
1	ole P	etics – Preser lays-Conversat	unication ntation skills – Group Di		Diale			– Shor		pore –
Debates-Ro	ole P act H	etics – Preser lays-Conversat	unication ntation skills – Group Di ion Practice	scussions –	Diale			– Shor	t Exter	pore –
Debates-Ro Total Conta Text Books	ole P act H s	etics – Preser lays-Conversat Iours : 60	unication ntation skills – Group Di ion Practice	scussions – Total Pra	Diale octical	Class	s : 0	– Shor	rt Extern Fotal Ho	urs : 60
Debates-Ro Total Conta Text Books	ole P act H s oert J	etics – Preser lays-Conversat Iours : 60 I.Dixson. ,Con	unication ntation skills – Group Di ion Practice Total Tutorials : 0	scussions – Total Pra	Diale octical	Class	s : 0	– Shor	rt Extern Fotal Ho	urs : 60

Department :	: Civ	il Engineering		Programme : B. Tech. Civil Engineering									
			Ser	nester II	,								
Course			Course Name		Hours / Week Cre				Ma	aximum	Marks		
Code			Course maine		L	Т	Р	С	IA	UE	Total		
P 104		PHYS	SICS LABORATORY		0	0	3	2	50	50	100		
Objective (s)	To provide Physics.	a practical understandin	g of some	e of th	ne con	ncepts	s learnt i	n the t	heory c	ourse on		
			List of experiments (A	ny 10 Ex	perim	ents))						
1. The	rmal	l conductivity	– Lee's DISC										
			- Radial flow										
			n or Hollow prism										
			smission grating										
5. Spec	ctroi	meter - Ordin	ary & Extraordinary rays	5									
6. New	vton	's rings											
7. Air-	– we	edge											
8. Half	f sha	de polarimete	er – Determination of sp	ecific rota	tory p	ower							
9. Jolly	's ex	xperiment – č	letermination of α										
10. Mag	neti	sm: i – h curv	<i>r</i> e										
11. Field	d alc	ong the axis o	f coil carrying current										
12. Vibr	atio	n magnetome	eter – calculation of mag	netic mor	nent &	: pole	stren	gth					
		-	vavelength determination	n using t	ransm	ission	grat	ing, refle	ection	grating	(vernier		
14. Dete	ermi	nation of opt	ical absorption coefficier	nt of mate	rials u	sing l	aser						
		1	merical aperture of an op			U							
16. Elec	trica	al conductivit	y of semiconductor – two		four p	probe	meth	nod					
17. Hall	effe	ect in semicor	nductor										
Total Conta	ct H	Iours : 0	Total Tutorials : 0	Tot	tal Pra	ctical	Class	s : 45	,	Total H	ours : 45		

Department	: Civil Engineering		Programme : B. Tech. Civil Engineering									
		Semest	er II									
Course		Course Name	Hoi	ırs / W	Veek	Credit	Ma	iximum N	Iarks			
Code		Course Manie	L	Т	Р	С	IA	UE	Total			
P105	CHEMIS	TRY LABORATORY	0	0	3	2	50	50	100			
Objective (s)	To gain practi	ical knowledge on engineer	ince to In	ndustria	l Applic	ation						
	L	ist of experiments (Any 1	l0 Experim	ents)								
1. I	Determination of di	issolved oxygen in water.										
2. I	Determination of to	otal hardness of water by E	DTA meth	od.								
3. I	Determination of ca	arbonate and bicarbonate in	n water.									
4. I	Estimation of chlor	ide content in water.										
5. H	Estimation of magn	lesium by EDTA.										
6. H	Estimation of vineg	ar.										
7. I	Estimation of ferror	us by permanganometry.										
		us and ferric iron in a solut	ion mixture	by die	chron	netry.						
9. H	Estimation of availa	ble chlorine in bleaching p	owder.			•						
10. H	Estimation of coppe	er in copper sulphate soluti	ion.									
11. F	Estimation of calciu	ım by permanganometry.										
12. H	Estimation of iron b	by colorimetry										
	Demons	tration Experiments(An	y two of th	e follo	wing	;)		Total H	ours:9			
1. I	Determination of C	OD of water sample.										
		-										
2. I	Determination of le	ad by conductometry.										
3. I	Percentage composi	ition of sugar solution by v	iscometry									
Total Conta	ct Hours : 0	Total Tutorials : 0	Total Pr	actical	Class	: 45	٢	Гotal Ho	ours : 45			

Department	: Civ	vil Enginee r i	ing		Programme : B. Tech. Civil Engineering										
				Semest	er II			-							
Course Code			Course Name		Hours / Week			Credit	Maximum Marks						
		WODI			L	T	P	С	IA	UE	Total				
P 106		WORK	KSHOP PRACTI	CE	0	0	3	2	50	50	100				
Objective (s	5)	To establis To develop To establis To explain To develop	the basics of me sh hands on expe p basic joints and sh the importanc n the role of basic p an intuitive une al machines.	erience on th d fittings usir ce of joints ar c workshop i	e worling the nd fitti	king t hand ing in ineeri	tools tool engi ng	s neering :			in				
Ι		Fitting													
2. 3. II Study of an Butt joint 1. 2. 3.	Sym Acu rc ar s – Stuc Simj	metric fitti ite angle fit Welding nd gas weld Demonstra ly of arc an ple lap welc gle V butt w	ting ling equipment a ation of gas weld Id gas welding eq ding (Arc) velding (Arc	nd tools – Ed		-	ation	ı – Exer	cises of	n lap joi:	nt and V				
III			netal work												
1. 2. 3.	Stuc Fun	ly of tools a nel ste collectio	•	on simple pi	roduct	ts like	Offi	ce tray a	nd was	te collec	ction tray				
IV Study of to		Carpentry			to ond	Mar	ting	inte							
•			eries – Exercises and machineries	, on Lap join	is and	wor	use jo	onns							
1.		f lap joint	and machinenes												
2															
		ner mortise	joint												

P107 NCC / NSS

NCC/NSS training is compulsory for all Undergraduate students

- 1. The activities will include Practical/field activities/Extension lectures.
- 2. The activities shall be carried out outside class hours.
- 3. For the above activities, the student participation shall be for a minimum period of 45 hours.
- 4. The activities will be monitored by the respective faculty in charge and the First Year Coordinator.
- 5. Pass /Fail will be determined on the basis of participation, attendance, performance and behavior. If a candidate Fails, he/she has to repeat the course in the subsequent years
- 6. Pass in this course is mandatory for the award of degree

III SEMESTER

Department	t : C	ivil Engi	neerin	g		<u>i</u>	<u> </u>	ne : F	B. Tecl	h. Civil I	Enginee	ering		
					5	Semester III		Iours	/	Credi	Ma	ximum	Marlzo	
Course			(Course N	lame			Weel		t	IVIA	AIIIIUIII	WIAIKS	
Code							L	Т	Р	С	IA	UE	Tota	ıl
MA T31]	MATI	HEMAT	ICS – III		3	1	0	4	25	75	100)
Objective (functions, conformal mapping, bilinear transformation, contour integration and expanding functions into Fourier series including Harmonic analysis													ic
UNIT – I		Function	on of a	a comple	ex variabl	e						Total I	Iours :	9
Continuity, and polar f analytic fund	forn	n) and s	ufficie	nt condi	itions (exc	cluding pro			-		-	· ·		
UNIT – II		Confor	mal m	napping								Total I	Iours :	9
transformat Laurent's th singularities UNIT – II Cauchy's in evaluation of (statement of contour (exe	heon I ntegr of r only	rem (wit Compl ral theor esidues - r) – App	hout 1 ex Int rem an – Cauc olicatio	egration nd its ap chy's resi n of resi	Series ex pplication, idue theor	xpansion of , Cauchy's rem – Cont	integra	olex al for tegra	valuec mula tion:	l function and pr Cauchy's	ons – oblems s and J	classific Total F . Resid ordan's	ation o Iours : ues an Lemm	of 9 Id na
UNIT – IV		Fourier										Total H	Hours :	9
Dirichlet's c series for oc problems. UNIT – V	conc	litions – Ind even	Gener functi	al Fourie	alf-range F	-	-					series -	- Fourie - Relate	er ed
Parseval's th	neor	em on F	ourier	Coefficie	ents. Com	plex form o	f Four	ier se	ries –	Harmor	nic Ana	lysis.		
Total Conta	ıct H	Hours : 4	5	Total T	utorials : 1	5 T	otal Pr	actica	l Clas	s:0	٢	Fotal H	ours : 6	0
Programm Outcome	e		1. U ii e 2. F	Understar ntegration engineerir Expand f	nd the co n and app ng and tecl functions	on of the m ncepts of the oly these ide hnology. into Fourie eering and t	functio eas to s er serie	n of solve es w	a con probl	mplex v ems occ	ariable curring	in the a	irea of	
Text Book	S		.i	1	8	0		- 01						
2. Ven	ikata	,	0	0		for first year natics, Vol.						ompany,	,	

Reference Books

- 1. Kandasamy P. et al, Engineering Mathematics, Vol. II & III, S. Chand & Co., New Delhi, 2012.
- 2. Bali N. P and Manish Goyal, Text book of Engineering Mathematics, 3rd Edition, Laxmi Publications (p) Ltd., 2008.
- 3. Grewal B.S., Higher Engineering Mathematics, 40th Edition, Khanna Publishers, Delhi 2007.

4. Erwin Kreyszig, Advanced Engineering Mathematics, 7Th Edition, Wiley India, (2007).

Department : C	ivil Engineerii	ng Pro Semester	gramme:	B.Tecl	n. Civil	Enginee	ring		
				rs / W	Veek	Credit	Max	imum	Marks
Course Code		Course Name	L	Т	Р	С	IA	UE	Total
CET32		ENCE ENGINEERING	4	0	0	4	25	75	100
Objective (s)	processe 2. To prov understa 3. Facilitate	liarize the students to interiors s and their significance in civi- vide an insight on mineral nd their effects and significance the students to understand mphasize their significance in	l Enginee ls, rocks ce in vari various de	ering. and ous are efects	their eas of associa	geologica civil Engi ite with g	al cha ineerin geologi	racteris g. cal forr	tics to
UNIT – I	General Ge	ology Engineering – interior of							urs : 12
geomorphologia weathering , Fl Engineering – classification an UNIT – II Physical proper feldspar family, minerals - effect UNIT – III Classification o metamorphic ro syenite, diorite,	cal (surface) p luvial process earthquake, i d remediation Mineralogy ties of minera Augite, Horr to f minerals Petrology f rocks - mo ocks - Physica gabbro, pegr	processes –weathering – typ es, glaciations , wind action ts causes, classification, ear	es , weat , their la hquake importa Iron oxio nd rocks. structure erties of d stone, erate - ro	hered and for zones nt rocl de min and for rocks- limest	produ rms ar of Ind k form lerals, orms o . Study one, s	cts, asses nd their dia, - La ing mine Augite, H of igneo y of impo hale, bre	ssment signific indslide Te erals –(Hornbl Te ous, sec ortant r ccia , field of	of deg cance i es, its otal Ho Quartz end, ar otal Ho dimenta ocks - conglos	gree of n Civil causes, urs : 12 family, nd Clay urs : 12 ury and granite, merate,
Attitude of beds classification an	s - out crops, s nd their bearing	study of structural features su ng on engineering constructi ethod and its applications in o	ch as folc on – pri	nciples	s of ge		nformit	ties ,the	eir brief
UNIT – V	***************************************	applications		3.0011112)		Τc	otal Ho	urs : 12
	i	igation, Geotechnical classifi	cation of	rock,	geolog	ical cons			
and dam site, interpretation f formations affect	reservoir site, for civil engi cting groundw	, buildings, road cuttings, su neering projects, groundwar vater and its significance in co	eudy of a cer- type nstruction	air pho s of a n.	otograf aquifer	ohs and	satellit perties	e imag of geo	es and ological
Total Contact H Programme O		Total Tutorials : 0ToStudent will be familiarizeminerals, rocks, structural dsolutions to various problem	efects an	plate t d their	ectoni signifi	cance to	quakes	, land	
Text Books									
	C," Engineerir	neering Geology ", Macmillar ng Geology for Civil Engineer					td., 201	12.	
 Leggot, Blyth, F Bell.F.G 	R.F.," Geolog .G.M., "A Ge 6, " Fundamer	y and Engineers ", McGraw ology for Engineers", Arnold ntals of Engineering Geology ng Geology" Elsevier public	, London ' Butterw	, 2003. orth-H		ann, 198	3.		

Department : (Civil Engineering		Progr	amme :	B.E. C	ivil En	igineerin	g		
-	{	Semester-III								
				Hou	ırs / W	'eek	Credit	Max	imum	Marks
Course Code	Cour	se Name		L	Т	Р	С	IA	UE	Total
CE T33	BUILDING T	ECHNOLOGY	•	4	0	0	4	25	75	100
Objective (a)	1. To understand the	e building materia	ll, chara	cterizati	on and	l its ap	plication	ı		
Objective (s)	2. To acquire knowle	edge on convention	onal an	d unique	e techn	ology	of const	ruction	1 111 bi	uldıng
UNIT – I	Building Material	S						To	tal Ho	ours : 12
Lime, Timber a	and its Products, Floo	or and Wall Tiles,	Pozzo	lanas, Fe	errous	metals	, Therm	al Insu	lation	
UNIT – II	Finishing and Per	fective materials	5					To	tal Ho	ours : 12
	erials: Glass, Alumin		ints, V	arnishes	s, Diste	emper	, Waterp	proofin	ig and	l Damp
-	rials, Ferrocement an									
UNIT – III	Components of bu	<u> </u>								ours : 12
i	and Cavity wall, Co	1	ry, Do	ors, Wi	ndows	, Ven	tilators,	Stairs,	Lift,	Ramps,
Escalators, An	ti Termite Treatment									
UNIT – IV	Plumbing and Ten	np, Structures						Тс	tal Ho	ours:12
	Plumbing and Sanita	_	ction, '	[Tempor:	ary Str	ucture	es, Intro	duction	n to l	Building
Maintenance.				-						-
UNIT – V	Modern Technique	es						Тс	tal Ho	ours : 12
	Energy Efficient Bui ost - effective Constr			ant Bui	ldings	(as p	er IS),	Ventila	tion a	and Air
Total Contact 1		Tutorials : 0	·····•	l Practic	al Clas	s • ()		Τc	tol Uc	ours : 60
	1. One should have						hishing n			Jui 3 . 00
	2. Should have acqui									nishing.
Text Books										
	S., Building Material	s. Vikas Publishir	o Hous	se.Pvt. I	td. Ne	w De	lhi. 2012			
	C., Ashok Kumar Jai		0						hing	(P).Ltd.,
New Delhi-				U					0	
D - (1 -									
Reference Boo										
/1 .	, Engineering Materi									
	S.,Building Technolo	0.	0							
	U.K, Building Materi C, Building Materials					rvt., L	u., 2012			
T. Varginese, F.	C, Dunung Material	5, 1 ICHUCC-Hall OI	mula I	v	2015.					

Department : (Civil Engineering	Program	nme :]	B.Tech	1. Civil	l Enginee	ring		
	Semester-III								
				ırs / W	r	Credit		imum	
Course Code	Course Name		L	Т	Р	С	IA	UE	Total
CE T34	MECHANICS OF SOLIDS - 1	I	3	1	0	4	25	75	100
Objective (s)	 To develop an understanding of the deformable body and the internal To show proficiency in mathemate engineering and mechanics problet To develop analytical and graphical 	stress, str tics and b em.	rain an Dasic sc	d defo ciences	rmatic requir	on induce	d in th	ne body	7.
UNIT – I	Stresses & Strains						Т	'otal H	ours : 9
	s and Strains – Tension, compression a s – Compound bars.	and shear	stresse	es - Ho	oke's l	law - con	npoun	d stress	ses -
UNIT – II	Bending Stresses						Т	'otal H	ours : 9
	nd bending moment diagrams for h	beams -	Theor	v of	simple	bendin			
	sections. Beams of uniform strength.	o cuino	111001	.j 01 .	ompie	Serreirig	5 2		, 602000
UNIT – III	Shear stress						Т	'otal H	ours : 9
Shear stress di	istribution due to bending – Shear C	Centre. S	prings	– Stif	fness ·	– paralle	l, serie	es - Pr	oblems
	ses – Principal planes and stresses-Moh								
UNIT – IV	Torsion						Т	'otal H	ours : 9
	ple Torsion – Torsional rigidity – Tors hin cylinders and shells – Thick cylinde		on-circ	ular se	ctions	– Comp	osite s	shafts i	n series
UNIT – V	Columns						Т	'otal H	ours : 9
	ler's theory – Rankine – Jordon formul s- Laterally loaded columns, Stability C								bads
Total Contact	Hours : 45 Total Tutorials : 15	Total	Practic	al Clas	s:0		To	otal Ho	urs : 60
Programme Out come	 Calculate and understand the conc Calculate, describe, and estimate bending, and torsion, and internal calculate internal stresses and strequations and Mohr's circle; Understand stability and buckling compressive force 	e externa stresses a trains thr	al load associat ough 1	lings, i ted wit the ap	includi th thes plicati	e externa on of st	l loadi tress t	ings; ransfor	mation
Text Books									
	S.S., Strength of Materials, Vikas Publis , A Text book of Strength of Materials,	0	• • •						2012.
Reference Boo	ks								
 Surendra Sir Rattan, S.S., 	nd Junnarkar.S.B., Mechanics of structungh, Strength of Materials, Vikas Publi Strength of Materials, Tata McGraw-J V, Purushothama Raj.P, Strength of M	ishing Ho Hill, 2011	ouse, 20 1.	013		C		l,, 2012	

	ivil Engineering	Programme	: B.7	Tech	. Civi	l Enginee	ering		
		ester III							
C C 1	C N	Ho	urs /	We	ek	Credit	Max	imum I	Marks
Course Code	Course Name	L	1	Γ	Р	С	IA	UE	Total
CE T35	MECHANICS OF FLUIDS	3	1	L	0	4	25	75	100
	1. To make the student to understand	nd the basic	orope	ertie	s of fl	uids and	princip	oles of	
Objective (s)	mechanics of fluids.		_						
	2. To apply the above principle for	solving typic	al ele	men	itary f	iled prob	olems		
UNIT – I	Fluid properties						Т	otal He	ours:9
Density, Speci	fic Weight, Specific Volume, Specifi	ic gravity, (Comp	ress	ibility	, Viscos	ity, sui	face t	ension,
capillarity, vap	our pressure. Fluid Statics: Pressure	in a fluid,	press	sure	head	, Measu	rement	of pi	essure.
Hydrostatic for	ces on submerged plane and curved s	surfaces, Buo	yanc	y, M	letace	ntre, Sta	bility o	f floati	ng and
submerged bod	ies.								
UNIT – II	Fluid Kinematics						Т	otal He	ours:9
Stream line, str	eak line, path line and stream tube. T	ypes of flow	, stea	.dy ,	unste	eady, uni	form, r	ion- u	niform,
laminar, turbul	ent, rotational and irrotational flows.	Equation of	cont	inui	ty for	one, two	o, three	e dime	nsional
flows, stream fu	inction and velocity potential function	, flow net an	alysis.		-				
Dynamics of t	low: Euler's equation of motion, B	ernoulli's ec	uatio	on, s	simple	e applica	itions of	of Ber	noulli's
equation, Mom	entum equation. Kinetic energy and M	omentum co	rrecti	ion f	factor	s.			
UNIT – III	Boundary Layer Theory						Т	otal He	ours:9
Boundary Laye	r thickness, Displacement thickness, N	Momentum 1	hickr	iess,	Ener	gy thick	ness, B	ounda	ry layer
prowth and se	paration. Laminar flow: Laminar flo	.1 1	•	тт			а		
0-0, und 00	paradon. Lanniar now. Lanniar no	w through f	npes,	, На	igen-	poissum	e flow,	, energ	gy loss.
0	7: Turbulent flow through pipes, D	0 1	1 .		0	1			
Turbulent flow	1	0 1	1 .		0	1			
Turbulent flow	: Turbulent flow through pipes, D	0 1	1 .		0	1	iergy a	nd Hy	
Turbulent flow gradients, pipes UNIT – IV	: Turbulent flow through pipes, D in series and parallel.	arcy's equat	ion,	Min	or lo	sses, En	ergy a T	nd Hy otal He	ours : 9
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve	 Turbulent flow through pipes, D in series and parallel. Flow measurement 	arcy's equat zle, and mo	ion, outhp	Min iece	or lo s, flo	sses, En	ergy a T	nd Hy otal He	ours : 9
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve	r: Turbulent flow through pipes, D in series and parallel. Flow measurement enturimeter, Orificemeter, Flow noz:	arcy's equat zle, and mo urement in o	ion, outhp	Min iece	or lo s, flo	sses, En	nergy a T notche	nd Hy otal Ho es and	ours : 9
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a UNIT – V	 Turbulent flow through pipes, D in series and parallel. Flow measurement enturimeter, Orificemeter, Flow nozz nd standing wave flume, Velocity meas 	arcy's equat zle, and mo urement in o ude	outhp	Min iece char	or lo s, flo nnel.	w over	nergy a T notche T	nd Hy otal He es and otal He	ours : 9 weirs, ours : 9
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a	 Turbulent flow through pipes, D in series and parallel. Flow measurement mturimeter, Orificemeter, Flow nozzand standing wave flume, Velocity meas Dimensional Analysis and Simility 	arcy's equat zle, and mo urement in o ude ham's fi th	outhp popen of	Min iece char	or lo s, flo nnel.	w over	nergy a T notche T	nd Hy otal He es and otal He	ours : 9 weirs, ours : 9
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a	 Turbulent flow through pipes, D in series and parallel. Flow measurement enturimeter, Orificemeter, Flow nozz and standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking el Analysis, Distorted models, Principl Hours : 45 	arcy's equat zle, and mo urement in o ude ham's fi th es of analog Total Prac	outhp open of coren	Min iecea char n, I Class	or lo s, flo nnel. Dimer s : 0	w over	nergy a T notche T numb To	nd Hy otal He es and otal He ers, La tal Ho	ours : 9 weirs, ours : 9 aws of urs : 60
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a UNIT – V Dimensional a similitude, Mod	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozz and standing wave flume, Velocity meas Dimensional Analysis and Similitut nalysis- Rayleigh's method, Bucking el Analysis, Distorted models, Principl 	arcy's equat zle, and mo urement in o ude ham's fi th es of analog Total Prac	outhp open of coren	Min iecea char n, I Class	or lo s, flo nnel. Dimer s : 0	w over	nergy a T notche T numb To	nd Hy otal He es and otal He ers, La tal Ho	ours : 9 weirs, ours : 9 aws of urs : 60
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a UNIT – V Dimensional a similitude, Mod Total Contact H	 Turbulent flow through pipes, D in series and parallel. Flow measurement enturimeter, Orificemeter, Flow nozz and standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking el Analysis, Distorted models, Principl Hours : 45 	arcy's equat zle, and mo urement in o ude ham's fi th es of analog Total Prac basic under	outhpopen of tical (standi	Min iecea char n, I Class	or lo s, flo inel. Dimer s : 0 of me	w over	nergy a T notche T numb To	nd Hy otal He es and otal He ers, La tal Ho	ours : 9 weirs, ours : 9 aws of urs : 60
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact H Programme	r:Turbulent flow through pipes, Din series and parallel.Flow measuremententurimeter, Orificemeter, Flow nozzad standing wave flume, Velocity measDimensional Analysis and Similitynalysis- Rayleigh's method, Buckingel Analysis, Distorted models, PrinciplHours : 45Total Tutorials : 15The student should have a through	arcy's equat zle, and mo urement in o ude ham's fi th es of analog Total Prac basic under	outhpopen of tical (standi	Min iecea char n, I Class	or lo s, flo inel. Dimer s : 0 of me	w over	nergy a T notche T numb To	nd Hy otal He es and otal He ers, La tal Ho	ours : 9 weirs, ours : 9 aws of urs : 60
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books	r:Turbulent flow through pipes, Din series and parallel.Flow measuremententurimeter, Orificemeter, Flow nozzad standing wave flume, Velocity measDimensional Analysis and Similitynalysis- Rayleigh's method, Buckingel Analysis, Distorted models, PrinciplHours : 45Total Tutorials : 15The student should have a through	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic under actical proble	outhp ppen of tical (standi ems a	Min ieces char n, I Class ing o .nd s	or lo s, flo unel. Dimer s: 0 of me solve t	w over usionless chanics of them.	notche T notche T numb To of fluid	nd Hy otal He es and otal He ers, La tal Hou Is and	ours : 9 weirs, ours : 9 aws of urs : 60 use the
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume at UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P	r: Turbulent flow through pipes, D in series and parallel. Flow measurement enturimeter, Orificemeter, Flow nozz nd standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking el Analysis, Distorted models, Principl Hours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic under actical proble	outhp ppen of tical (standi ems a	Min ieces char n, I Class ing o .nd s	or lo s, flo unel. Dimer s: 0 of me solve t	w over usionless chanics of them.	notche T notche T numb To of fluid	nd Hy otal He es and otal He ers, La tal Hou Is and	ours : 9 weirs, ours : 9 aws of urs : 60 use the
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P House,	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Similitinalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Hours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble	outhpopen of tical (standigens a and	Min iece: char n, I Clas: ing o nd s Hy	or lo s, flo nnel. Dimer s : 0 of me solve t drauli	w over asionless chanics o chem. c Machi	notche T notche T numb To of fluid nes, St	nd Hy otal Ho es and otal Ho ers, La tal Ho s and	draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the I Book
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact I Programme Out come Text Books 1. Modi,P House, 2. Rajput,J New D	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Hours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid New Delhi, 2014. R.K., Text Book of fluid Mechanics a elhi, 2014. 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble	outhpopen of tical (standigens a and	Min iece: char n, I Clas: ing o nd s Hy	or lo s, flo nnel. Dimer s : 0 of me solve t drauli	w over asionless chanics o chem. c Machi	notche T notche T numb To of fluid nes, St	nd Hy otal Ho es and otal Ho ers, La tal Ho s and	draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the I Book
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P House, 2. Rajput,J New D Reference Boo	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Similitinalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Hours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid New Delhi, 2014. R.K., Text Book of fluid Mechanics a elhi, 2014. 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble Mechanics nd Hydraulio	outhpopen of poren of tical (standi ems a and : Mac	Min ieccer char n, I Class ing o nd s Hy chino	or lo s, flo inel. Dimer s : 0 of me colve t drauli ery, S	w over sionless chanics o chem. c Machi	notche T notche To of fluid nes, St & Com	nd Hy otal Ho es and otal Ho ers, La tal Ho s and s and s and	draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the Book (P)Ltd.,
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a: UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P House, 2. Rajput, New D Reference Boo 1. Dougla	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Iours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid New Delhi, 2014. R.K., Text Book of fluid Mechanics a elhi, 2014. S.J.F., Gasiorek, J.M and Swaffield, J.A., 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble I Mechanics nd Hydraulio Fluid Mecha	outhpopen of popen of eorem tical (standi ems a and c Mac	Min ieces char n, I Class ing d nd s Hy chind	or lo s, flo mel. Dimer s : 0 of me oolve t drauli ery, S Edn.Po	sses, En w over usionless chanics o chem. c Machi .Chand & earson E	notche T notche T numb To of fluid nes, St & Com	nd Hy otal Ho es and otal Ho ers, La tal Ho s and s and pany, (draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the Book (P)Ltd.,
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume at UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P House, 2. Rajput, New D Reference Boo 1. Dougla 2. Das M.	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Similitinalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Hours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid New Delhi, 2014. R.K., Text Book of fluid Mechanics a elhi, 2014. S.J.F., Gasiorek, J.M and Swaffield, J.A., M Fluid Mechanics and Turbimachines 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble I Mechanics nd Hydraulie Fluid Mecha	ion, puthp pen of eoren tical (standi ems a and : Mac nics - all of	Min iecce: char n, I Class ing o nd s Hy chino chino 4 th E	or lo s, flo inel. Dimer s : 0 of me colve t drauli ery, S Edn.Pe ia(P)	sses, En w over sionless chanics o chem. c Machi .Chand & earson E Ltd New	rergy a T notche T numb To of fluid nes, St & Com ducatio Delhi,	nd Hy otal Ho es and otal Ho ers, La tal Ho s and s and candarc pany, (on India 2008.	draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the Book (P)Ltd.,
Turbulent flow gradients, pipes UNIT – IV Pitot tube, Ve Venturiflume a UNIT – V Dimensional a similitude, Mod Total Contact H Programme Out come Text Books 1. Modi,P House, 2. Rajput,J New D Reference Boo 1. Dougla 2. Das M. 3. Sukuma	 Turbulent flow through pipes, D in series and parallel. Flow measurement Inturimeter, Orificemeter, Flow nozzind standing wave flume, Velocity meas Dimensional Analysis and Simility nalysis- Rayleigh's method, Bucking lel Analysis, Distorted models, Principl Iours : 45 Total Tutorials : 15 The student should have a through knowledge to identify elementary pr N.,and Seth, S.M., Hydraulics, Fluid New Delhi, 2014. R.K., Text Book of fluid Mechanics a elhi, 2014. S.J.F., Gasiorek, J.M and Swaffield, J.A., 	arcy's equat zle, and mo urement in o ide ham's fi th es of analog Total Prac basic unders actical proble Mechanics nd Hydraulio Fluid Mecha s, Prentice H & Hydraulic	outhpopen of popen of tical (standi ems a and c Mac nics a all of Mach	Min iecea char n, I Class ing o nd s Hy chino 4 th E Ind iines	or lo s, flo inel. Dimer s : 0 of me solve t drauli ery, S Edn.Po ia(P) 1 s, Tata	sses, En w over sionless chanics o chem. c Machi .Chand & earson E Ltd New	rergy a T notche T numb To of fluid nes, St & Com ducatio Delhi,	nd Hy otal Ho es and otal Ho ers, La tal Ho s and s and candarc pany, (on India 2008.	draulic ours : 9 weirs, ours : 9 aws of urs : 60 use the Book (P)Ltd.,

Department :	Civil Engir	neering	Program Semester III	ime :	В.Т	ech.	Civil Er	ngineeri	ng	
Course				ours	/ W	eek	Credit	Ma	ximum 1	Marks
Code		Course Name			Т	Р	С	IA	UE	Total
CET36		SURVEYING - I	3		1	0	4	25	75	100
l	1 Und	erstand the basic cond	rents of surveying	and	abl	e to	solve pr	oblems	associat	ted with
		ir measurements and er		unu	aor	0 10	oone pi	00101110	4000014	ica with
Objective (s)		the basics of compas		ble t	0 114	nders	stand the	system	n of coo	rdinates
0.5,000100 (0)	1	angular measurement f	, 0				cuita tite	, systen		iunated
		in various methods of t					3			
UNIT – I		Compass and Plane T			8 -	0,010	, 		Total F	Iours : 9
		rinciples – Classificatio		e wo	rk.		L			
		ompass – Surveyor's co				and o	conversio	ons – L	ocal attr	action -
Magnetic decli			ompute Douring	0,000					o cui utti	action
		EYING : Plane table ir	nstruments and acc	esso	ries	– m	erits and	demer	its – met	thods –
Radiation-Inte										
UNIT – II		g and applications							Total H	Iours : 9
	à	ons – Methods of level	ling – levels and st	aves	- ter	npor	arv and	permar		
		erential levelling - boo								
		velling- longitudinal ar								
	1	nethods – characteristi				0		51		
UNIT – III	·····	lite Surveying			A				Total H	Iours : 9
		l microptic – Descripti	ion and uses – Ter	npor	ary :	and 1	Sermane	nt adjus	stments	of
		ital angles – Vertical an								
		or and distribution – G								
UNIT – IV		Volume calculation,							Total H	Iours : 9
Areas and Vol	···· <u>à</u> ······	as enclosed by straight	<u> </u>		es –	- vol	ume – e	arthwoi	k calcul	ations -
		nass – haul diagrams.	0	0						
		ninary and location sur	veys for engineeri	ng p	roje	cts –	- Lay out	t – Sett	ing out	works -
		ays – Railways and wat		01	,		5		U	
UNIT – V		metric Surveying							Total H	Iours : 9
		Tangential, stadia and	subtense methods	s - St	adia	l syst	ems – H	Iorizon	tal and	inclined
sights - Vertic	•	mal staffing - Fixed an				-				
bar Total Contact	Hours · 15	5 Total Tutorials : 1	15 Total F	Practi	cal (<u> </u>	• 0	,	Total Ho	
i otar contact	110010 · Te	At the end of the cou						.1		
Programme (Jutcome	Compass surveying,								
i iogiainine (Juccome	Engineering surveys	Thank tuble surv	cynig	, L	e v en	<u>,</u> 110	couonic	survey	ing and
		-ingineering surveys								
Text Books		1 ?? C (\ \7_1_]	I, Laxmi Publicatio	ons. 2	2012	2				
Text Books 1. Punmia .I	3.(,, et a	I. Surveying vois			-~ + 4	-				
1. Punmia .I		• •					tion. Put	ne 2012		
 Punmia .I Kanetkar, 	T.P. ,Surv	veying and leveling, Vois, I					tion, Pu	ne 2012		
 Punmia .I Kanetkar, Reference Bo 	T.P. ,Surv o ks	• •	ls. I & II, United l	book	cor	pora				<u>- 2012</u>

Department : (Civil Engineerin	g	Progr	amm	ne : B.	Tech	. Civil Er	ngineeri	ng	
		Semes	ter III							
Course				Η	ours	/	Credit	Max	kimum I	Marks
Code	1	Course Name		I	Week					
Code				L	Т	Р	С	IA	UE	Total
CE P31	SURVEYI	NG LABORATORY - I		0	0	3	2	50	50	100
Prerequisite	Nil									
Objective (s)		the students handling inst								
	2. To make	the students to understan	nd variou	us pr	oblen	ns in i	linear and	d angula	ar meas	urement
	associate	d with field application								
		List of Experin	ments							
		calculation of area using c								
		Measurement of bearing o			s by p	risma	tic comp	ass		
		- Radiation and Intersecti	on meth	nods						
4. Reduct	ion of Levels:									
(i)	Height of Colli									
(ii)	Rise and Fall n									
0	0	udinal section and cross se	ections of	of a r	oad p	lottin	ıg			
· · · · · · · · · · · · · · · · · · ·		lar and Oblique offsets								
· · · · · · · · · · · · · · · · · · ·	0	om Radial methods and b	lock leve	eling						
0	out Grades for	-								
0	nent of Sewer lir									
•		ic Surveying using Electro	onic The	odol	ite					
		hts and Distance by :								
(i)	Stadia Hair Me									
(ii)	Tangential Tac	heometry								
Total Contact	Hours : 0	Total Tutorials : 0	Tota	ıl Pra	ctical	Class	s : 45]	Total Ho	ours : 45
Programme	-	e hands on exercise and r	nake the	e stuc	dents	to le	arn the b	asics o	f field	oriented
Outcome	problems i	n surveying								

Department : Ci	vil Engineering	Programn	ne : B.'	Геch.	Civi	l Enginee	ering		
	Ser	nester III							
Course Code	Course Name	H	lours /	/ Wee	k	Credit	Max	imum I	Marks
Course Coue	Course marine	L	, ,	Г	Р	С	IA	UE	Total
CE P32	MATERIALS TESTING LABORATORY - I	0		0	3	2	50	50	100
Objective (s)	To understand the preparation of a to the analysis and design of variou	is structural e			1 stro	ength of	materia	lls in re	elating
1. Tension Tes	t on Mild steel and Tor Steel rod sp	pecimens							
	r Test on Steel Rod Specimens								
	le-bend Test on Steel Rod Specime	ns							
	dness Test on Metal Specimens								
	ardness Test on Metal Specimens								
	rdness Test on Metal Specimens								
	t on Metal Specimens using Izod ar								
	t on Metal Specimens using Charpy								
	est on Sheet metals using Erichsen (Jupping							
	st on Metal Specimens-	. 1							
	t on Metal Specimens- Demonstrati	ion only							
	- Demonstration only on Test on wood Specimens- Paralle	l and Dornoon	diqula	r to th	C.	ning			
1	r Test on Wood Specimens	and respen	ulcula		ie G	lams-			
	sion Test on Wood Specimens								
	Test on Wood Specimens								
Total Contact H	*	Total Pr	actical	Class	· 45		То	tal Hoi	ırs : 45
	The course will enable the stud	i				nical pro			
Programme Out come	subjected to the loads and repor know where the mechanical proj	t and verify t	he san	ne as p	per I	ndian sta	indards		

Department : Civ	il Enginee	ering	Prog	gramme	: B.Te	ech. Ci	vil Engine	ering		
		S	Semeste	r III						
Course Code		Course Name		Hou	rs / W	7eek	Credit	Max	kimum I	Marks
Course Coue		Course maine		L	Т	Р	С	IA	UE	Total
CE P33	BUILI	DING PLANNING A DRAWING	AND	2	0	3	2	50	50	100
Objective (s)		lerstand the Functional levelop skills in manu								ion and
			Theorem	ry						
3. Lighting and	acoustics to Auto	s movement and buildir CAD – Draw and m D commands . Plates to be submi	nodify	tools-]	Dimen	nsionin	-			
	Staircase ouildings – ings like o	ilators. - Plan, Section, Elevatic ffice, dispensary, post c	· ·	0		ter and	l AutoCad)		
Total Contact Ho		Total Tutorials : 0	Tot	al Pract	ical Cl	lass : 4	5	Т	otal Ho	ours:75
Programme Or come	117 :	bility to develop a conce bility to draft a Approva	1	0			quirement	:S		

IV SEMESTER

Department : Civil 1	Engineering	r 5	Progra	mme	: В.Те	ch. Ci	vil Engine	ering		
		Se	mester I	V						
Course Code		Course Name		Hou	rs / W	/eek	Credit	Max	kimum l	Marks
Course Code				L	Т	Р	С	IA	UE	Total
MA T41		HEMATICS - IV		3	1	-	4	25	75	100
Objective (s) 1 2 3 4	ProblemTo make vibrating	nce of problems in Pa solving techniques of the students knowle string (wave equation aint the students with	of PDE edgeable on), heat	in the equat	e areas ion in	of Bo one at	undary Va nd two din	nension		ke
UNIT I	10 acqua	and the students with		icepis	01 11	cory o	n samping	5	Total h	ours:9
integrals – Lagrange coefficients		bitrary constants and st order equation – H		·			. 0	· 1	tant	
UNIT II								_		ours:9
1		equation by the metho verse vibration of an			on of v	variabl	es – Boun	dary val	1	olems – Iours : 9
		dimensional heat flo ly state condition – (1					ns for tv	wo dime	ensional
UNIT IV									Total h	ours:9
	method of	least squares – fitting	g of strai	ght li	nes, se	cond o	legree par	abolas a		
		nce: Large samples to ns and standard devia		ngle j	propor	tions,	difference	es of pro	portion	ıs,
UNIT V									Total h	ours:9
variances – Chi-squ	are test for	mean, difference of goodness of fit and is	ndepend	ence	of attr	ibutes	•	-		
Total Contact Hour		otal Tutorials : 15				lass : 0			'otal He	ours : 60
Programme Out c		 successful completie Understand the problems occur Know samplin engineering and 	e differe rring in tl ng theor	ent ty ne are y an	pes c a of ei	of PD nginee	E and wi	ill be a echnolog	gy.	
Publishing Com 2. S. C. Gupta and Reference Books: 1. Kandasamy P. et 2. Grewal B.S., Hig 3. Bali N.P., Manish	npany, Madı d V. K. Kap al, Enginee gher Engine n Goyal, " E	poor, "Fundamentals ring Mathematics, Vo ering Mathematics, 4 Engineering Mathema	of Math ol. II & I Oth Edit atics, 7 th I	emati II, S. ion, F Editic	ical Sta Chano Khann on, La	utistics 1 & Co a Publ xmi Pu	", Sultan C D., New De ishers, Del ublications	Chand a elhi, 201 lhi 2007	nd sons	
		Engineering Mathema gineering Mathematic)03		

Department : Ci			.mme : I	3.Tec	h. Civi	l Engine	ering		
	Se	mester IV							
Course Code	Course Name		Hou	,	Week	Credit	Max	imum	Marks
			L	Т	Р	С	IA	UE	Total
CE T42	CONCRETE TECHNOLO		4	0	0	4	25	75	100
Objective (s)	 Should be able to unders Aggregates, Admixtures Understand the hydration m concrete To design concrete mixes. 		C	0					
UNIT – I	Cement						То	tal Ho	urs : 12
<u>i</u>	- chemical composition- hydration	of Portlar	nd ceme	nt- h	eat of	hvdratio			
	nent paste- Types of Portland ceme								
	Aggregates & Fresh Concrete						То	tal Ho	urs : 12
<u>.</u>	ural and mineral aggregates- chai	acteristics	of app	regat	e and	their sig			
	ixture for concrete- concrete at ea								
······	Hardened Concrete						То	tal Ho	urs : 12
significance, stru	duction- components of concre- icture of the hardened concrete- C of concrete- drying shrinkage and	Compressiv							
······································	Durability Properties	÷					То	tal Ho	urs : 12
Durability of co	ncrete- significant- causes of concre	ete deterio	ration- a	lkali-	aggreg	ate react	ion- de	teriora	tion by
	- concrete in marine environment.				00 0				
UNIT – V	Mix Design						То	tal Ho	urs : 12
Concept of prop control of concr	portioning concrete mixes- mix desinet equality.	ign- IS coo	le metho	od- A	ACI me	ethod. Te	esting e	valuati	ion and
Total Contact H		Total	Practica	ıl Cla	ss : 0		То	tal Ho	urs : 60
Programme	Student should be able to understa	and the pr	operties	of c	oncret	e and to	design	the c	oncrete
	mixes of various grades used in the						U		
Text Books									
1. Santhakuma	r.Ar, Concrete Technology, Oxford	Universit	y Press,	2013					
2. Shetty, M.S,	Concrete Technology; Theory & Pr	actice, S.C	hand& (Grou	p, New	7 Delhi, 2	2014.		
Reference Boo					.				
1. Gambhir.M.	I, Concrete Technology: Theory &	Practice, 7	ata Mc	Graw	Hill C	o., New	Delhi,2	2013.	
	Concrete Technology & Good Con								2013.
	& BrooksJi.,Concrete Technology, 1				0		ч.) Т	,	
3. Neville.Am.	x brooksji.,Concicic recimology,	Carson L	Jucation	ւ ուս.	, 2015.				
	1.N, Design of Concrete Mixes, CB								

Department : C	ivil Engin	eering	Progr	amme :	B.Tec	h. Civ	il Enginee	ering		
	-		Semester I	V						
		C NI		Hou	rs / W	eek	Credit	Max	imum l	Marks
Course Code		Course Name		L	Т	Р	С	IA	UE	Total
CE T43		ENVIRONMENTA		4	0	0	4	25	75	100
	477 .	ENGINEERING-		1						
		dy the water supply der								
Objective (s)		lerstand the quality of v				8				
		ryout functional design	of water tre	atment	units.					
UNIT – I	Introdu		-							urs : 12
		- objectives and requ								-
1	Various n	nethods of estimating	population	- Variat	ions in	n rate	of deman	d and	its effe	ects on
design.	_								-	
UNIT – II	<u>.</u>	of Water and intakes								urs : 12
		sources - Computation								
		lerground sources like								
2	1	on of wells-transportati	ion of water	- Pipe	flow for	ormula	ae – pipe	mater	ials- la	ying of
pipes-testing of	·									
UNIT – III		of Water:								urs : 12
		lards for drinking wate				hysical	l, chemica	l and l	oacterio	ological
analysis of wate	r - quality	of water for trade purp	pose and swi	mming	pools					
UNIT – IV	<u>i</u>	'reatment system:								urs : 12
1		atment - Principles, fu		0				entatic	on tank	s, sand
·····	s of disinf	ection, water softening	, aeration, I1	on and	manga	nese r	emoval.			
UNIT – V	<u>.</u>	ition System								urs : 12
		n, determination of ca								
		oution system, analysis								
		mbing works and layo		supply	system	n for b	ouildings,	waste	detecti	on and
*		rrosion and its preventi								
Total Contact H	Iours: 60	1		l Practi						urs : 60
Programme		An ability to apply k	0				ence and l	Engine	ering to	o solve
come	out	problems related to	water supply	and sat	nitation	n				
Text Books										
00 .		s of Environmental Eng	0 0			1 2				
		Jain and Arun K Jain.,	Water Supp	ly Eng	ineerin	g: Env	vironment	al Eng	ineerin	g 1,
Laksmi Publica		.td., 2013								
Reference Boo										
		d Tchobanoglous, G., I		0		0.				
01		ext book of Environme	0	0.						
	0.	, Water Supply Enginee	0		0		0 .			s, 2013
4. Modi, P.N,	Water Sur	oply Engineering: Envir	ronmental F	noineer	ing 1	Standa	rd Dublie	hore 2	011	

Department :C	Civil Engine	ering	C	Program	ne: B	.Tec	h. Civi	l Engine	ering		
			Semo	ester IV	Ц~	1140 /	Week	Credit	Mor	imum	Marks
Course Code		Cour	se Name		но L	T	Р	Credit	IA	UE	Tota
	МЕ									75	
CE T44			S OF SOLIDS		3	1	0	4	25		100
Objective (s)	 Calculate The sturn relations 	e the stresse dent is to ships betwee	tand the conce es due to unsyr realize the th en strain and d concept of var	nmetrical lo ree-dimensi isplacemen	oading Ional t.	g nati	ıre of				
UNIT-I	Deflectio	n of beam	S						٢	Гotal I	Hours:
Deflection of l	beams – Do	ouble Integr	ation method -	- Macaulay's	s met	hod,	mome	ent area r	nethod	l -conj	ugate
UNIT–II	Energy n	-								·····	lours :
Strain energy displacement											
theorem.	Deflectio	on of trusse	·S						٢	Fotal F	Hours:
Deflection of t				d dummv/u	nit le	oad r	nethod	ls.	-	I Otal I	10010.
				-				1		г . 1 т	т
UNIT-IV Analysis of co	L		ous beams&	<u>.</u>			<u> </u>				Iours:
UNIT-V Complex strain strain circle – materials.	ns – linear	strains for		of stress – 1					s of sti	ess –	
Total Contact	Hours : 45	Total Tute	orials:15	Total Pr	actica	al Cla	ass : 0		Т	otal H	ours:6
Programme		and St 2. Determ 3. Relate	loading and de rain nine the deflect complex stress knowledge of t	tion of bear & strain	ns &	trus	ses		oonent	s of st	ress
TextBooks									-		
			terials, Vikas P ysis – I, Vikas I								
Reference Bo	ooks										
Ltd, 2012. 2. Rattan, S. Strength of 3. Jindal.Uc.	S., Strength of Materials , Strength o	of Material , Pearson E of Materials,	echanics of stru- ls, Tata McGra ducation Ltd., , Pearson Educ Tata McGraw-	w-Hill, 201 2012. cation Ltd.,2	1.Rar					0	

Department : C	ivil Eng	gineer	ing	Programme : B.Tech. Civil Engineering							
				Semester I		/ -			T	•	
Course Code			Course Name			rs / W		Credit		·····	Marks
Gouise Source					L	Т	Р	С	IA	UE	Total
CE T45			LICS AND HYD MACHINERY		3	1	0	4	25	75	100
Objective (s)	2. T		e a thorough under lerstand the basic p s.					plication	of typ	oical pu	mps and
UNIT – I										Total I	Hours: 9
-	Most ec	• •	of channel, Velo ical section, critical	•		•		0			
UNIT – II	1 110w.									Total I	Hours : 9
	flow: N	on-un	iform flow, Dynam	ic equation	for Grad	lually	Varied	l flow. co			
			varied flow- hydrau								
UNIT – III						<u> </u>		A		Total I	Hours: 9
Basics of Turb	o mach	inery:	Impulse momentu	m equation,	Hydroc	lynam	ics for	rces of je	ets on	vanes,	Velocity
		•	m principle, applica	-	•	•		,			,
UNIT – IV										Total I	Hours : 9
Turbines: Class	ification	n, imp	ulse and reaction tu	rbines, char	acteristic	curv	es, dra	ft tubes,	gover	ning of	
turbines, specif	ic speed	l, unit	quantities concept,	similarity, c	avitation	l .			_	_	
UNIT – V											Hours: 9
Pumps: Centrif	ugal pu	mps-	classification, work	done, minin	num star	ting s	peed, l	losses an	d effic	iencies	, specific
			ecific speed, charact								
			, effects of acceler	ation and f	rictional	resist	ance,	separatio	on, Ai	r Vesse	els, work
saved by fitting			r								
Total Contact I	Hours :		Total Tutorials : 1	i	al Practi						ours : 60
Programme Outcome	e 1	par situ 2. Fui	the end of the c ameters of channel lations. Ther the student sh ctical situations, apa	s like unifor nould be abl	m flow, e to sele	critica ect the	ıl flow e type	and use of pump	it for ps, tur	typical bines f	practical
Text Books	l	P14	etical situations, ap	art moni une	leistailei	118 111	u yp				
	and Set	h. S.N	I., Hydraulics, Fluid	1 Mechanics	and Hy	/draul	ic Ma	chines. S	tandar	d Bool	x House
New Delhi,		, 0	., 11) and 100, 11an			artear			currant	a 2001	1 110 000
	, Text I	Book	of fluid Mechanics	and Hydrau	lic Mach	inery,	S.Cha	und & Co	ompan	y, (P)L	td., New
Reference Boo	oks										
		Aechar	nics & Hydraulic M	achines, Pea	rson Ed	ucatio	n Ltd.	, 2013.			
1 .			of fluid Mechanics :						ations	(P)Ltd.,	, 2013.
			echanics & Hydraul								
			ok of Hydraulics F								

Department : C	ivil Engineering P	Programme : B.Tech. Civil Engineering						
	Semester IV	Τ						
Course		Hou	rs / W	/eek	Credit	Max	imum	Marks
Code	Course Name	L	Т	Р	С	IA	UE	Total
CE T46	SURVEYING - II	3	1	0	4	25	75	100
Objective (s)	 Solve sight specific problems such as tacheometric means of surveying. Understand the concepts of setting on method of surveying. Learn the working principles of electro of total station. Understand the concepts of geograph global positioning systems which will which involves measurements. 	it curves onic dista iical info	in the nce m rmatic	e field leasu on sy	d by bor ring instr rstems ar	th angurument nd the idents	ular and and h utiliza project	d linear andling tion of works
UNIT – I	Control Surveying							ours:9
Instruments and Single and recip	whole to part - Horizontal and vertical cont d accessores - Corrections - Satellite station rocal observations - Modern trends – Bench	n - Redu			0	ignom	etriclev	elling -
UNIT – II	Engineering Survey							ours:9
. 0	ves: Horizontal curves – Elements of a circul					0		curve –
·····	nple circular curve – Compound curve – Rev	erse curv	re – Tı	ansit	10n - vei			
UNIT – III	Survey Adjustments			77	1			ours:9
weighted observ	es, precautions and corrections - Classificat vations - Method of equal shifts - Principle of justment of simple triangulation networks					1		
UNIT – IV	Advances in Surveying					Т	'otal H	ours:9
1	system, Measuring Principle, Working Princip							
	ing and working principle, Sources of error		– Fur	ndam	entals –	Intro	luction	space,
	tts – Observation principle, Orbit Representa	tion						
UNIT – V	Remote Sensing and GIS							ours:9
aircrafts-Manne characteristics o	f Remote Sensing - Electro Magnetic Spec d and Unmanned spacecrafts –sun synchron of different platforms- Basic principles of da Spatial and Non-spatial – Spatial Data- Data	nous and ta proces model in	geo s sing – 1put –	ynch GIS Data	ronous s - Defini 1 analysis	atellite tion – outpu	s – Tyj - Comp t .	pes and ponents
Total Contact H		Total Pra						urs : 60
Programm Outcome	= SUPVENING U ONTROL SUPVENING SUPVE	y adjustr	ients,		0			
Text Books								
	C., et .al" Surveying ", Vols, I &II, Laxmi		,					
	T.P. ,Surveying and leveling, Vols. I & II, Un	ited bool	corp	oratio	on, Pune	,2012		
Reference Boo	oks							

- 1. Kanetkar, T.P. and Kulkarni, S.V., Surveying and Levelling, Part I & Part II, United book Corporation, Pune. 2012.
- 2. Shahani, P.B., Text book of Surveying, Vol.I& II, Oxford &IBH Publications, 2012.
- 3. Lillesand, T.M., Kiefer R.W., Remote sensing and Image Interpretation, John Wiley and Sons, Inc, New York, 2010.
- 4. Paul.R. Wolf, Elements of Photogrammetric with air photo interpretation, Tata McGraw -hill, 2012.

Departmen	t : Civil Engir	neering	-	Prog	ramm	e : B.'	Гесh.	Civil En	gineeri	ng	
			Semester	IV							
Course		(Course Name		Hour	s / W	'eek	Credit	Max	imum	Marks
Code		C	Jourse manne		L	Т	Р	С	IA	UE	Total
CEP41	SURV	EYIN	IG LABORATORY - II		0	0	3	2	50	50	100
Objective (s) 1. To	train t	he students in handling an	gular r	neasu	ring ir	istrui	ments use	ed for s	survey	ing.
	1		the students in determinin	0				bjective	by vari	ous m	eans of
	sur	veying	associated with vertical an			l cont	rol				
			List of Exper	riment	ts						
1. Close	d traverse, plo	otting a	and adjustment using Elect	ronic t	theodo	olite					
2. Open	traverse, plot	ting ar	nd adjustment using Electro	onic th	neodo	lite					
3. Deter	mination of H	leights	and Distances by trigonom	metric	surve	ying u	ising	electroni	c theo	dolite	
4. Settin	g out for build	ding us	sing Electronic theodolite								
5. Settin	g out curves l	oy Ran	kine's method using Electr	ronic t	heodo	olite					
6. Realig	nment of roa	d curv	es								
7. Total	Station Surve	ving –	Measurements of Distance	es and	angle	s, Slot	oe dis	stances, H	leight,	Trave	rsing,
	g out, etc				U	, 1			0 ,		0,
, in the second se		o-ordi	nate Measurements								
		0 0-0-									
			(B) List of Demons	stratio	on On	ly					
1. Inte	rpretation of	Aerial	Photographs- Demonstrat	tion							
Total Conta	ict Hours : 0		Total Tutorials : 0	Tot	al Pra	ctical	Class	: 45	To	tal Ho	urs : 45
			provide hands on exercise								-
Programm	e Outcome		rmining the elevation of a	ın obje	ective	by va	rious	means o	of horiz	zontal	as well
		as ve	ertical control survey								

Department : Civ	vil Engineering	Programme	: B.Te	ech. C	ivil Engine	ering		
		Semester IV						
C C 1		Hou	rs / W	7eek	Credit			Marks
Course Code	Course Name	L	Т	Р	С	Maximum IA UE 50 50 Fluid Machine	UE	Total
CE P42	FLUID MECHANICS MACHINES LAI		0	3	2	50	50	100
Objective (s)	To determine the various pa	arameters used in I	Fluid r	necha	nics and F	luid Ma	chinery	
A. Fluid Flow I								
	on of rectangular, triangular, tr	1						
	nation of coefficient of dischar			thpiec	es			
	on of venturimeters, orifice m	eters and Rota Me	ters					
	on of Bernoullis theorem							
	nation of pipe friction							
	nation of minor losses in pipe			ıdden	contractio	n, expa	nsion et	,
	nation of Metacentric height o	-	dels					
	nation of force due to Impact	of jet on vanes						
	achinery Laboratory	с. :с. 1	,		1)			
	performance characteristics o			stant s	speed)			
	performance characteristics o	1 01	1					
	performance characteristics o	of Submersible pun	np					
4. Tests on	Turbine							
Total Contact H	ours : Total Tutorials	:0 Total Prac	tical C	lass : 4	45	+	Fotal H	ours :45
Programme Ou	tt come check fly stabili	able to measure the floating b	odies	•	0			

(ii) To design the various pumps and Turbines used in the power stations.

Department : Civi	l Engineering	Programm	ne: B	3.Tec	:h. Civil	Engineer	ring		
	Sen	nester IV							
Course Code	Course Name		Ho	urs /	/ Week	Credit	Max	imum	Marks
	Course Maine		L	Т	Р	С	IA	UE	Total
CEP43	GEO SCIENCE ENGINEERI	NG LAB	0	0	3	2	50	50	100
Objective (s)	 To familiarize the various typ to understand their behavior/p To impart hands on training in To provide the knowledge on p 	performance n determina	e. ition	of p	ropertie	s of rocks	s.	:haract	eristics
 2. Megascop 5. Megascop 4 Megascop 5 Megascop 6 Elementa 7 Establishi 8 Construction 9 Electrical 10 Determining 11 Determining 	bic study of important rock formin bic study of important non-silicate bic study of important igneous roc bic study of important sedimentary bic study of important metamorph ry problems of true dip, apparent ing thickness, depth and structure ion of topographic profile, geologic resistivity method (not recommen- ation of soundness of rocks (not ation of weathering of rock ation of durability of rock	e minerals. cks. y rocks nic rocks dip and str of geologic cal sections as nded for exa	rike o al fo nd th amin	of geo ormat heir in hatior	tions nterpretat n).	tion	ns.		
Total Contact Ho		Total Pra					-		urs : 45
Programme Outcome	Student should able to ident on the construction. Also, formations and preparation site investigation process.	the student	t wil	ll be	familiar	with att	titude	of geo	ological

SP P44 PHYSICAL EDUCATION

Physical Education is compulsory for all the Undergraduate students

- 1. The activities will include games and sports / extension lectures.
- 2. Two Hrs. / Week will be allocated for physical education in the third and fourth semesters. The student participation shall be for a minimum period of 45 hours in both the semesters put together.
- 3. These activities will be monitored by the Director of Physical Education.
- 4. Pass /Fail will be determined on the basis of participation, attendance, and performance. If a candidate Fails, he/she has to repeat the course in the subsequent years
- 5. Pass in this course is mandatory for the award of degree.

V SEMESTER

Department : C	ivil Engine	ering	Progr	amme :	B.Teo	ch. Civ	vil Engine	eering		
		Sen	nester V							
Course Code		Course Name		Hou	rs / W	'eek	Credit	Max	imum	Marks
Course Coue				L	Т	Р	С	IA	UE	Total
CE T51	DESIG	N OF RCC STRUCTU	RES	3	1	0	4	25	75	100
Objective (s)		erstand design principles of knowledge in the Limit st					asic struc	tural el	ements	
UNIT – I	Introduct	tion and Design Philoso	ophy					Т	otal He	ours:9
uniaxial compresentation of the behaviour in flexible behaviour flexible behaviour flexible behaviour for flexible behaviour flexible	 Reinforce ession and ression and resure – Derection fety Factor Limit Sta Collapse in Sexure, shear Limit Sta pression main and ression main and respective shear Limit Sta ngs – isolat oduction to Design of resonance 	ed concrete structures- l tension-reinforcing steel- sign for limit State Metho s- Limit States- Limit Stat te Design of Beams and Shear, Bond and Torsion- c, bond and torsion. Design te Design of Columns embers – Effective length bending, axial compress in-braced slender column te Design of Footings a ed footings with axial ecc fire resistant design – cod f Brick Masonry Walls - strength of bricks – cour	basic m Design od: Con e of Col 1 Slabs - Design gn of tw n – Des ion with n – Stre and Stai entric lo le provis	philoso cepts- lapse in of bea to way ign sho biaxia ngth ro rcases bading- sions.	ophy – Assum n Flexu ums an contin ort colu al bene eductio	- Intro aptions are d one uous s uumn u ding, l on coe ined re block-	oduction s- Charac way slab slab syste under axia Design o efficient n ectangula porother	to WSI eteristic T for fle ms. De T al comp f slend methoc T r footin T m , aer	M,ULM Streng otal He xure - esign of otal He otal He otal He otal He otal He	4,LSM- gth and ours : 9 Design f Lintel ours : 9 n, axial umns – ditional ours : 9 esign of ours : 9 ours : 9
Retaining walls.		ication for mortar, Desi		тлапу	IOauce	ı wan	s, cecen	Incany	IOauce	i walls,
Total Contact H		Total Tutorials : 15	Tota	l Practi	ical Cla	ass : 0		То	tal Ho	urs : 60
Programme O	ut come	 An ability to design a slabs, footings, staire An ability to design a 	cases etc	., by Li	mit sta	ate me	thod of d		s, colu	mns,
	, C	n of Reinforced Concrete ate Design of Reinforced		,			2	,		
Publication 2. Ashok K. Ja 3. Virendra G	ar Jain , Ash s (P) Ltd., N ain, 'Reinfo ehlot, Ram	nok Kumar Jain, Punmia.J New Delhi, First Edition, 2 rced Concrete Limit State Chandra, Limit State Des evdas Menon, Reinforced	2012 Design ign of C	', Nem Concret	Chano e Struc	d & Bi ctures,	ros, 2012 Standard	l Publis	shers, 2	

Course code		Semester	V						
Course code									
Course code			Hou	rs/W	eek	Credit	Maximu	ım Mar	ks
		Course Name	L	Т	Р	С	IA	UE	Total
CE T52	STRUCT	URAL ANALYSIS - I	3	1	0	4	25	75	100
Objectives	2. To fami	elop an understanding of the liarize the students with vari yse indeterminate structures	ous fo	orce a	ind dis	splacemen	it metho		
UNIT -I	Introduction							Total I	Hours : 9
Types of struc	tures – Behavio	ur of different structures- Sta	atic ar	nd kin	iemati	c indetern	ninacies -	– Analy	sis of
• •		by consistent deformation/f						,	
UNIT -II	Analysis of 7	Frusses						Total I	Hours:9
Analysis of pla		one or two redundant memb	bers b	y for	e met	hod - trus	ses with	lack of	fit -
Thermal stress				5					
UNIT -III	Slope Deflec	tion Method						Total I	Hours : 9
Continuous be	ams and rigid fr	ames, (with and without swa	ıy) - S	ymm	etry ar	nd anti-sy	mmetry-	gable f	rames -
Support settler	nent.		• /	-	-	-			
UNIT -IV	Moment Dis	tribution Method						Total I	Hours:9
	arry over factor nes with and wi	s – Analysis of continuous thout sway	Beam	s with	n and v	without su	apport se	ettleme	nt -
UNIT -V	Miscellaneou	-						Total I	Hours:9
	<u>i</u>	eams and frames. Analysis o	of fran	nes fo	or later	al loads b	v portal		
methods.	5	5					5 1		
Total Contact	Hours: 45	Total Tutorials : 15 Tot	tal Pra	actica	l Class	es: 0	Total	Hours	: 60
Programn	ne Outcome	Student should able to ide analyse them by applying s	-						nacy and
Text Books									
1. Devdas M	enon, Structural	Analysis, Narosa Publishing	; Hou	se, 20)14				
		., and Jain, A. K., Strength				d Theory	of Stru	ictures,	, Vol. II,
Laxmi Pub	lications, New I	Delhi, 2004.							
Reference Bo	oks								
1. Wang. C. H	K., Intermediate	Structural Analysis, Tata Mo	c Grav	w Hil	l, 2013	3			
0		ıral Analysis, Pearson Educa							
2.100000001		·	~	040					
	.S., Theory of S	tructures, S.Chand & Compa	any ,2	012.					

Semester V Course Code Course Name Hours / Week Credit Maximum N CE T53 GEOTECHNICAL ENGINEERING - I 3 1 0 4 25 75 Objective (s) 1. Provide the description of soil and to characterise soil as per IS Code. 2. To develop an understanding of the soil hydraulics, principles of stress distribution to self-weight and applied loading conditions and its application to compressibility soil. 3. Familiarize the students an understanding of strength of soils.	Total 100 on due
Course Code Course Name L T P C IA UE CE T53 GEOTECHNICAL ENGINEERING - I 3 1 0 4 25 75 1. Provide the description of soil and to characterise soil as per IS Code. 2. To develop an understanding of the soil hydraulics, principles of stress distribution to self-weight and applied loading conditions and its application to compressibility soil.	Total 100 on due
CE T53 GEOTECHNICAL ENGINEERING - I 3 1 0 4 25 75 Objective (s) 1. Provide the description of soil and to characterise soil as per IS Code. 2. To develop an understanding of the soil hydraulics, principles of stress distribution to self-weight and applied loading conditions and its application to compressibil soil. 1. Provide the description of soil and to characterise soil as per IS Code.	100 on due
 Provide the description of soil and to characterise soil as per IS Code. To develop an understanding of the soil hydraulics, principles of stress distribution to self-weight and applied loading conditions and its application to compressibility soil. 	on due
Objective (s)2. To develop an understanding of the soil hydraulics, principles of stress distribution to self-weight and applied loading conditions and its application to compressibility soil.	
5. I annualize the students an understanding of strength of solis.	
UNIT – I Index Properties Total Ho	urs:9
Soil formation - soil minerals - soil structure - three phase system - definitions- inter- relatio	nships
(derivations and problems) - Index properties determinations - IS soil classification - sol deposits in Ind	ia.
UNIT – II Soil Hydraulics Total Ho	urs:9
soil water – capillary phenomenon – permeability – field and laboratory test - seepage and flow	nets –
geostatic stress - neutral and effective stress (problems).	
UNIT – III Stress Analysis Total Ho	urs:9
Stress due to concentrated load, due to uniformly loaded area, line load strip load- pressure distri	bution
diagrams - contact stress - Westergarrd's analysis. (Derivations and problems)	
UNIT – IV Soil Compressibility Total Ho	urs:9
Compressibility : One dimension consolidation - consolidation process - consolidation theory - labor	oratory
test - pre consolidation pressure. Compaction - laboratory tests - field compaction (problems)	
UNIT – V Shear Strength Total Ho	urs:9
Shear strength- Mohr – coulomb theory – shear strength parameter – laboratory and field tests – pressure parameters - stress path - insitu shear strength - factors affecting shear strength - sh characteristics of sand and clay (problems).	
Total Contact Hours : 45Total Tutorials : 15Total Practical Class : 0Total Hou	rs : 60
Programme Out come The student should be able to classify the soil and evaluate the geotect properties of soil used in the design of geotechnical structure.	:hnical
Text Books	
1. Purushothama Raj. P, Soil Mechanics and Foundation Engineering, Pearson Education, 2010	
2. Ashok Kumar Jain, Punmia, B.C., Soil Mechanics and foundations, Lakshmi Publications ,2013.	
Reference Books	
1. Braja M. Das Textbook of Geotechnical Engineering, Cengage Leaning, 2009	
2. Venkataramiah. C., Geo Technical Engineering, NAIP, 2012.	
3. Murthy. V.N.S., A Text Book of Soil Mechanics & Foundation Engineering, CBS publishers, 201	13

4. Venkatramaiah.C, Geotechnical Engineering, New Age International (p) Ltd., 2014.

	: Civil Engineeri	ng	Program Semester V	nme :	B.Te	ch. Civ	il Enginee	ering		
Course			Semester v	LL	1140 /	Week	Credit	M	imum	Maulto
Code		Course Name		L	T T	Р	Credit	IA	UE	Tota
CE T54	FNIVIRONIM	ENTAL ENGIN	FERINCII	1 4	1 0	P 0	4	25	75	100
CE 134		important aspects of		+		0			15	100
Objectives	2.To understand	d the sewerage system it the safe disposal of	em and function		lesign	of sew	age treatn	nent u	nits.	
UNIT – I	Introduction	it the sale disposal	of waste water					To	otal Ho	urs : 12
Definitions	- General conside	erations- Interdeper	ndence of wate	er sup	ply a	nd was	te water d	isposa	l – sou	rce and
		bined and separate								
		nes – Data collectio								
UNIT – II		gy of sewage	0		L.	,			otal Ho	
	à	sical, chemical and	biological ch	aracte	ristic	s of s	ewage -			
		ificance. Sampling,								
UNIT – II	······	and transport of se		uivan	-01 <u>2</u>	ginnear			otal Ho	
		sewage - Materials		Flow	form		Solf aloon			
	1	0						0		
1		Sewer sections. D	0 1							
		nd procedures, sew			-					
	0 1 1	ent for removal of	, 0		11					
	0	il traps. Sewage pu	-	•	-				-	-
•	0	- General layout an		ectio	n - Pi	rıncıple	s of desig	gn of a	ntı syp	honage
······	······	namber - Fresh air i	nlet.							
UNIT – IV	<u>.</u>	methods								10
									otal Ho	
		nciples of sewage tr						oles of	sedime	entation
- Design of	settling tanks - '	Types of settling ta	anks - Chemic	al pr	ecipit	ation. 1	Biological	oles of Treati	sedime nent a	entation nd uni
- Design of Process : C	settling tanks - ' Contact beds - T	Types of settling ta frickling filter - D	anks - Chemic escription and	al pr l ope	ecipit ration	ation. l 1 of lo	Biologi <mark>c</mark> al w rate a	oles of Treati nd hig	sedime ment a gh rate	ntation nd uni filters
- Design of Process : C	settling tanks - ' Contact beds - T	Types of settling ta	anks - Chemic escription and	al pr l ope	ecipit ration	ation. l 1 of lo	Biologi <mark>c</mark> al w rate a	oles of Treati nd hig	sedime ment a gh rate	ntation nd uni filters
- Design of Process : C intermittent	settling tanks - ' Contact beds - 'I sand filter - D	Types of settling ta frickling filter - D	anks - Chemic escription and re filters. Activ	cal pr l ope vated	ecipit ratior sludg	ation. I 1 of lo ge Pro	Biological w rate a cess: The	oles of Treatund hig ory –	sedime ment a gh rate Diffus	entation nd uni filters ser and
- Design of Process : C intermittent Mechanical	settling tanks - ' Contact beds - 'I sand filter - D aeration - Conv	Types of settling ta 'rickling filter - D esign of the abov	anks - Chemic Description and re filters. Activ te and extende	cal pr l ope vated ed ae	ecipit ration sludą ration	ation. I 1 of lo ge Pro 1 proce	Biological ow rate as cess: The ess - Pro	oles of Treath nd hig cory – cess n	sedime ment a gh rate Diffus nodifica	entation nd uni filters ser and ation -
- Design of Process : C intermittent Mechanical Oxidation c digestion - C	Settling tanks - T Contact beds - T sand filter - D aeration - Conv litch - Principles Optimum conditi	Types of settling ta 'rickling filter - D esign of the abov ventional, High rat	anks - Chemic escription and re filters. Activities and extended ste stabilization	cal pr l ope vated ed ae n lago	ecipit ration sludg ration oon -	ation. I n of lo ge Pro n proce aerated	Biological w rate a cess: The ess - Pro I Lagoon.	oles of Treatind hig cory – cess n Princ	sedime ment a gh rate Diffus nodifica iple of	entation nd uni filters ser and ation - Sludge
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank	settling tanks - ' Contact beds - 'I sand filter - D aeration - Conv litch - Principles Optimum conditi	Types of settling ta 'rickling filter - D esign of the abov ventional, High rat and design of was ons - Digestion tar	anks - Chemic escription and re filters. Activities and extended ste stabilization	cal pr l ope vated ed ae n lago	ecipit ration sludg ration oon -	ation. I n of lo ge Pro n proce aerated	Biological w rate a cess: The ess - Pro I Lagoon.	oles of Treatind hig ory – cess n Princ ving be	sedime ment a: gh rate Diffus nodific: iple of ds. Sep	entation nd uni filters ser and ation - Sludge otic and
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V	Settling tanks - T Contact beds - T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of	Types of settling ta rickling filter - D esign of the abov ventional, High rat and design of was ons - Digestion tar	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata	cal pr l ope vated ed ae n lago nt liq	ecipit eration sludg eration oon - uid -	ation. 1 n of lo ge Pro n proce aerated Sludge	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry	oles of Treati nd hig ory – cess n Princ ving be To	sedime ment a: ph rate Diffus nodifica iple of ds. Sep otal Ho	entation nd uni filters ser and ation - Sludge otic and urs : 12
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater	Settling tanks - T Contact beds - T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Res	Types of settling ta rickling filter - D esign of the aboventional, High rate and design of was ons - Digestion tan Sewage use - Disposal of set	anks - Chemic Description and re filters. Activities and extended ste stabilization nks -Supernata ewage - Land	cal pr l ope vated ed ae n lago nt liq dispo	ecipit eration sludą eration oon - uid - sal - l	ation. I n of lo ge Pro- n proco aerated Sludge Dischat	Biological ow rate a cess: The ess - Pro l Lagoon. gas - Dry gas - Dry	bles of Treati nd hig ory – cess n Princ ring be <u>To</u> ivers. 1	sedime ment a gh rate Diffus nodifica iple of ds. Sep otal Ho akes, e	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuarie
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean	Settling tanks - Contact beds - Sand filter - D aeration - Conv litch - Principles Optimum conditi S Disposal and Rep – River pollution	Types of settling ta 'rickling filter - D esign of the abov ventional, High rat and design of was ons - Digestion tar Sewage use - Disposal of set a - Oxygen sag cu:	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a	cal pr l ope vated ed ae n lago nt liq dispo and r	ecipit ration sludg eration oon - uid - sal - I euse	ation. I n of lo ge Pro n proce aerated Sludge Dischan of was	Biological ow rate at cess: The ess - Pro l Lagoon. gas - Dry gas - Dry	bles of Treatu nd hig ory – cess n Princ ring be Tc ivers. 1 ts. – 1	sedime ment a: ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e: Disinfe	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction -
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination	Settling tanks - 'T Contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Reu – River pollution n and odour prev	Types of settling ta rickling filter - D esign of the abov rentional, High rat and design of was ons - Digestion tan f sewage use - Disposal of set n - Oxygen sag cus ention. Introductio	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost	cal pr l ope vated ed ae n lago nt liq dispo and r	ecipit ration sludg eration oon - uid - sal - I euse	ation. I n of lo ge Pro n proce aerated Sludge Dischan of was	Biological ow rate at cess: The ess - Pro l Lagoon. gas - Dry gas - Dry	bles of Treatu nd hig ory – cess n Princ ring be Tc ivers. 1 ts. – 1	sedime ment a: ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e: Disinfe	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction -
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean Chlorination of industrial	Settling tanks - 'T Contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum condition Disposal and Ren – River pollution n and odour prev water - Process r	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tan Sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b	anks - Chemic bescription and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco	cal pr l ope vated ed ac n lago nt liq dispo and r treat	ecipit ration sludg ration oon - uid - sal - I euse ment	ation. I n of lo ge Pro- aerated Sludge Dischar of was metho	Biological ow rate at cess: The ess - Pro l Lagoon. gas - Dry gas - Dry	oles of Treati nd hig ory – cess n Princ ring be <u>Tc</u> ivers. 1 ts. – 1 al natu	sedime ment a ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e Disinfe re of p	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction - roblem
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean Chlorination of industrial	Settling tanks - 'T Contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Reu – River pollution n and odour prev	Types of settling ta rickling filter - D esign of the abov ventional, High rat and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cu- ention. Introductio modifications and b Total Tutorials : 0	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I	cal pr d ope vated ed ac n lago nt liq dispo and r treat overy Practi	ecipit ration sludg eration oon - uid - uid - sal - l euse ment cal Cl	ation. I n of lo ge Pro- aerated Sludge Dischan of was metho	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia	bles of Treatu nd hig ory – cess n Princ ving be <u>Tc</u> ivers. 1 ts. – 1 al natu Tc	sedime ment a: ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e: Disinfe re of p	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction - roblem urs : 60
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean Chlorination of industrial	Settling tanks - 'T Contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum condition Disposal and Ren – River pollution n and odour prev water - Process r	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tan Sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I	cal pr d ope vated ed ac n lago nt liq dispo and r treat overy Practi	ecipit ration sludg eration oon - uid - uid - sal - l euse ment cal Cl	ation. I n of lo ge Pro- aerated Sludge Dischan of was metho	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia	bles of Treatu nd hig ory – cess n Princ ving be <u>Tc</u> ivers. 1 ts. – 1 al natu Tc	sedime ment a: ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e: Disinfe re of p	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction - roblem urs : 60
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta	Settling tanks - 'T Contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum condition Disposal and Ren – River pollution n and odour prev water - Process r	Types of settling ta rickling filter - D esign of the abov ventional, High rat and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cu- ention. Introductio modifications and b Total Tutorials : 0	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I re the techniqu	cal pr d ope vated ed ac n lago nt liq dispo and r t treat overy Practi-	ecipit ration sludg eration oon - uid - uid - sal - I euse ment cal Cl stills, a	ation. I n of lo ge Pro- aerated Sludge Dischar of was metho ass : 0 and mo	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia	bles of Treats nd hig ory – cess n Princ ring be Tc ivers. 1 al natu Tc incerin	sedime ment a ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e Disinfe re of p otal Ho og prac	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
- Design of Process : C intermittent Mechanical Oxidation C digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta	Settling tanks - T Contact beds - T sand filter - D aeration - Conv litch - Principles Optimum condition Disposal and Ren – River pollution n and odour prev water - Process r ct Hours : 60	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tan sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I re the techniqu	cal pr d ope vated ed ac n lago nt liq dispo and r t treat overy Practi-	ecipit ration sludg eration oon - uid - uid - sal - I euse ment cal Cl stills, a	ation. I n of lo ge Pro- aerated Sludge Dischar of was metho ass : 0 and mo	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia	bles of Treats nd hig ory – cess n Princ ring be Tc ivers. 1 al natu Tc incerin	sedime ment a ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e Disinfe re of p otal Ho og prac	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT – V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process r ct Hours : 60 e Out come	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tan sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I re the techniqu related to Dor	cal pr d ope vated ed ac n lago nt liq dispo and r t treat overy Practi- ues, sl mestic	ecipit ration sludg ration oon - uid - uid - sal - I euse cal Cl sills, a c and	ation. I n of lo ge Pro- aerated Sludge Dischar of was metho ass : 0 and mo Indust	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste	oles of Treats nd hig ory – cess n Princ ving be Tc ivers. 1 ts. – 1 al natu Tc incerin e Wate:	sedime ment a ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e Disinfe re of p otal Ho g prac r mana	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren – River pollution n and odour prev water - Process n ct Hours : 60 e Out come s N., Elements of	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tan Sewage use - Disposal of set a - Oxygen sag cur- tention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal.	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I e the technique related to Dor gineering ,S. C	cal pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- ies, sl mestic hand	ecipit: ration sludg ration oon - uid - uid - sal - I euse ment cal Cl cills, a c and & Co	ation. I n of lo ge Pro- n proce aerated Sludge Dischar of was metho ass : 0 and mo Indust	Biological ow rate a cess: The ess - Pro l Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste	elhi 20	sedime ment a ph rate Diffus nodification iple of ds. Sep otal Ho akes, e Disinfer re of p otal Ho g prac r mana	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K 2. Punmia.B	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process r ct Hours : 60 e Out come sN., Elements of S.C., Ashok Jain as	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal. Environmental Eng	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I e the technique related to Dor gineering ,S. C	cal pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- ies, sl mestic hand	ecipit: ration sludg ration oon - uid - uid - sal - I euse ment cal Cl cills, a c and & Co	ation. I n of lo ge Pro- n proce aerated Sludge Dischar of was metho ass : 0 and mo Indust	Biological ow rate a cess: The ess - Pro l Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste	elhi 20	sedime ment a ph rate Diffus nodification iple of ds. Sep otal Ho akes, e Disinfer re of p otal Ho g prac r mana	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
- Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K 2. Punmia.B	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process r ct Hours : 60 e Out come s N., Elements of S.C., Ashok Jain as s (P) Ltd., 2013	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal. Environmental Eng	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I e the technique related to Dor gineering ,S. C	cal pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- ies, sl mestic hand	ecipit: ration sludg ration oon - uid - uid - sal - I euse ment cal Cl cills, a c and & Co	ation. I n of lo ge Pro- n proce aerated Sludge Dischar of was metho ass : 0 and mo Indust	Biological ow rate a cess: The ess - Pro l Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste	elhi 20	sedime ment a ph rate Diffus nodification iple of ds. Sep otal Ho akes, e Disinfer re of p otal Ho g prac r mana	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
 Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K 2. Punmia.B Publications 	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process n ct Hours : 60 e Out come s N., Elements of c.C., Ashok Jain a: s (P) Ltd., 2013 Books	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal. Environmental En- nd Arun Jain., Wast	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I e the technique related to Dor gineering ,S. C te Water Engi	cal pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- ies, sl mestic hand neerii	ecipit: ration sludg ration oon - uid - uid - sal - I euse cal Cl xills, a c and & Cong inc	ation. I n of lo ge Pro- n proce aerated Sludge Dischar of was metho ass : 0 and mo Indust	Biological w rate a cess: The ess - Pro l Lagoon. gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste , New D Air Pollut	elhi 20 tion, L	sedime ment a ph rate Diffus nodification iple of ds. Sep otal Ho akes, e Disinfer re of p otal Ho g prace r mana 13 aksmi	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
 Design of Process : C intermittent Mechanical Oxidation C digestion - C Imhoff tank UNIT - V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K 2. Punmia.B Publications Reference I 1. Peavy.H 	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process r ct Hours : 60 e Out come s N., Elements of S.C., Ashok Jain a: s (P) Ltd., 2013 Books I, Rowe.D, and To	Types of settling ta 'rickling filter - D esign of the above ventional, High rat and design of was ons - Digestion tar Sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal. Environmental En- nd Arun Jain., Wast	anks - Chemic Description and re filters. Activities and extended ste stabilization hks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I e the techniqu related to Dor gineering ,S. C te Water Engi	al pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- les, sl nestic hand neerii	ecipit: rration sludg rration oon - uid - uid - sal - I euse o ment cal Cl xills, a c and & Cong inceri	ation. I n of lo ge Pro- n proce aerated Sludge Dischar of was metho ass : 0 and mo Indust: ompany cluding	Biological w rate a: cess: The ess - Pro l Lagoon. gas - Dry gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste , New D Air Pollut a McGrav	elhi 20 tion, L	sedime ment a ph rate Diffus nodification iple of ds. Sep otal Ho akes, e Disinfer re of p otal Ho g prace r mana 13 aksmi	entation nd uni filters ser and ation - Sludgo otic and urs : 12 stuaries ction - roblem urs : 60 tices to
 Design of Process : C intermittent Mechanical Oxidation c digestion - C Imhoff tank UNIT – V Wastewater and ocean - Chlorination of industrial Total Conta Programme Text Books 1.Duggal, K 2. Punmia.B Publications Reference I 1. Peavy.H 2. Macken 	settling tanks - 'T contact beds - 'T sand filter - D aeration - Conv litch - Principles Optimum conditi s Disposal of Disposal and Ren - River pollution n and odour prev water - Process r ct Hours : 60 e Out come s N., Elements of G.C., Ashok Jain as s (P) Ltd., 2013 Books I, Rowe.D, and To zie L Davis, Wate	Types of settling ta rickling filter - D esign of the above ventional, High rate and design of was ons - Digestion tar sewage use - Disposal of set a - Oxygen sag cur- ention. Introduction modifications and b Total Tutorials : 0 An ability to use solve problems and Disposal. Environmental En- nd Arun Jain., Wast	anks - Chemic Description and re filters. Activities and extended ste stabilization nks -Supernata ewage - Land rve - recycle a on to Low cost by product reco) Total I re the techniqu related to Dor gineering ,S. C te Water Engi	al pr l ope vated ed ac n lago nt liq dispo and r treat overy Practi- ues, sl mestic hand neerin l Eng a Mc	ecipit: ration sludg ration oon - uid - uid - sal - I euse cal Cl cills, <i>a</i> cal Cl cills, <i>a</i> cand & Cc ng inc	ation. I n of lo ge Pro- aerateo Sludge Dischar of was metho ass : 0 and mo Indust ompany cluding	Biological ow rate a cess: The ess - Pro I Lagoon. gas - Dry ge in to r te effluen ds -Specia odern eng rial Waste	elhi 20 tion, L	sedime ment a ph rate Diffus nodifica iple of ds. Sep otal Ho akes, e Disinfe re of p otal Ho g prac r mana 13 aksmi	entation nd uni filters ser and ation - Sludge otic and urs : 12 stuaries ction - roblen urs : 60 tices to gemen

Department : Civ	vil Enginee1	ring	Progran	nme :	B.Te	ch. Civ	vil Engine	eering		
		Ser	mester V							
Course Code		Course Name		Hour	s / W	Veek	Credit	Max	imum	Marks
Course Code		Course Maine		L	Т	Р	С	IA	UE	Total
CE T55		RANSPORTATION ENGINEERING - I		3	1	0	4	25	75	100
Objective (s)		lent should have unde g material characteriza				-		•		neering
UNIT – I I	Highway C		· · · ·			0		<u> </u>		lours:9
Importance Roa	d transpor	tation, Highway alignm	nent – R	equire	men	t, Eng	ineering	survey	s for 1	highway
location. Maps &	drawings	to be prepared. Geomet	ric design	– Cro	oss se	ection	element,	width,	camber	, design
- speed, sight dis	tances, requ	uirements and design of I	horizonta	l and v	vertic	al alig	nments.			
	Highway N					.		٢	Total H	lours : 9
Highway materia	ls – Proper	ties of sub-grade paveme	ent compo	onent	mate	rials –	Tests on	aggrega	ates, su	b- grade
		Design of Bituminous n						00 0		0
	Flexible Pa							٢	Total H	lours : 9
Pavement analysi	s – flexible	e pavement – calculation	of stresse	es — sir	ngle l	ayer, t	wo layer	theory -	– Com	outation
		ce – computation of defl			U			-	-	-
		n of stresses – load and		ture e	ffect	s - We	estergaard	l's theo	ry - B	radbury
theory.			-				C		-	-
UNIT – IV I	Rigid Pave	ments						٢	Total H	lours : 9
. Pavement De	sign Facto	ors in the design of	flexible	and	rigid	l pave	ements,	CBR 1	nethod	s. IRC
		le pavement design (IRC								
subsurface highw	'ay drainage						·			
UNIT - V (Construction	on and Maintenance						٢	Total H	lours : 9
Pavement constr	uction tech	nniques – Types of paver	ments – V	WBM,	WM	IM, C	SB cons	truction	n. Cons	truction
of bituminous pa	wements an	nd rigid pavements. Pave	ement fai	lures a	nd tl	heir re	medies. I	Paveme	nt evalı	uation –
structural, function	onal.									
Total Contact Ho	ours : 45	Total Tutorials : 15	Total P	ractic	al Cla	ass : 0		Т	otal Ho	ours : 60
Programme Ou	tcome	Student will be familia Highway Engineering.	rized with	n the t	ermi	nology	and fun	Idament	tal con	cepts of
Text Books		<u>. </u>								
	I.A, Khann	a. S.K. , Ceg Justo, Highv	way Engir	neering	g, Ne	m Cha	und & Bro	others,	2014	
0		es Practice and Design of		<u> </u>						3
Reference Book	*	<u> </u>				<u> </u>			,	
		Supta, Highway and Bridg	ge Engg	Stand	ard p	ublish	ers. and I	Distribu	itor. 20	10.
-		d Animesh Das, Principl	0 00		-					
Pvt. Ltd., 201	•	· 1		-		C	0.			
		Nb Lal ," Principles and	practice of	of high	nway	engine	eering ", I	Khanna	Publis	hers.
). Highway	Engineering, Charotar B	ook Distr	ibutor	s. 20	13				
1. Itangwaia.0.C	', 1 11811 way	ingineering, Charotal D		104101	.5, 20	1.5				

Department	: Civil Engineeri	ng	Progra	mme :	B.Te	ech. Civ	vil Engine	ering				
		Sen	nester V									
Course Cod	0	Course Name		Hou	rs / Y	Week	Credit	Max	imum	Marks		
Course Cou	C	Course maine		L	Т	Р	С	IA	UE	Total		
CE P51	GEOTEC	HNICAL ENGINEE LABORATORY	RING	0	0	3	2					
Objective (s	properties) 2. To familia	arize the students to do de the knowledge on	the exper	iments	s as p	er the §	guidelines	of BIS	5.			
1. S	pecific Gravity of	of CG and FG Soils										
		nt Determination – Core	Cutter M	lethod	& W	ater co	ontent De	termin	ation			
		sis – Mechanical Method										
4. (Grain Size Analys	sis – Sedimentation Ana	lysis - Hy	drome	eter N	fethod		-				
5. A	tterberg Limits:	Liquid Limit Test and I	Plastic Lin	nit Tes	st							
6. A	tterberg Limit:	Shrinkage Limit Test &	Free Swe	ell Test	Į							
7. L	aboratory Perm	eability Test: Constant a	and Varia	ble He	ead							
		Compaction Test										
	Direct Shear Test											
10. U	Inconfined Com	pression Test										
	'riaxial Shear tes											
		fication as per IS Code										
13. (Consolidation Te	st (Demo)										
Total Contac	t Hours : 0	Total Tutorials : 0	Total	Practic	al Cl	ass : 45	5	To	otal He	ours : 45		
Programme	Outcome	Student should able to index properties to properties of soil used	classify	the so	oil a	nd to	evaluate					

Department : Cr	vil Engineering	Programme	e : B.T.	ech. C	Civil Engin	eering		
	S	emester V						
C C 1		Hou	ırs / W	/eek	Credit	Max	kimum I	Marks
Course Code	Course Name	L	Т	Р	С	IA	UE 50 waste w ding an 'otal Ho accessi	Total
CE P52	ENVIRONMENTAL ENGINEERING LAB	0	0	3	2	50	50	100
Objective (s)	 To learn and practice on the quality and other environmenta To correlate theoretical and practice 	al parameters.	_					
 D D	etermination of Turbidity, pH, C etermination of Alkalinity. etermination of Alkalinity. etermination of Chlorides. etermination of Hardness. etermination of Iron etermination of Manganese. etermination of Fluorides. etermination of Fluorides. etermination of Suspended solid etermination of Dissolved Oxyg r test for the determination of op etermination of B.O.D. etermination of E-Coli. ate count (for bacterial analysis of etermination of Residual Chlorin	s. en. ptimum coagu			Chlorine.			
Total Contact H		Total Prac					otal Ho	
Programme Ou	It come Students should ca waste water and ot self on the process international coddl	ther environn s decision ma	nental	pollut	ion and th	heir by	accessin	ig them

Department : C	ivil Engir		Programm	ne : B.	Tech.	. Civi	l Enginee	ering		
	1		Semester V			-			-	
~ ~ .	Co	ourse Name		Hours	····,		Credit		imum	
Course Code				L	Т	Р	С	IA	UE	Total
CE P53		MATERIAL TESTIN LABORATORY-II		0	0	3	2	50	50	100
Objective (s)	mate 2. To fa 3. To p of Bl 4. To o 5. Deve	course provides an erials, and presents labor amiliarize the students to provide the knowledge of IS. bbtain practical knowledg elop skills for analyzing elop skills for analyzing e	atory standard o do the experi on mix propo ge about fresh g experimenta	s and ments rtion and ha l data	testin as po ing c arden and	ng rec er the of co ed pr work	uirement guidelin ncrete a coperties ing in te	ts for tl es of B s per t of conc ams.	nese m IS. he guio	aterials
	L	I.	Tests on cen	nent						
 Determin Determin Determin Determin Determin Determin Sieve ana Determin Determin 	nation of nation of nation of nation of lysis of f nation of nation of	specific gravity and wate ine & coarse aggregates maximum bulking and c bulk density of fine and	cement paste. imes of cement f cement mort: Cests on aggre er absorption of corresponding d coarse aggre Fests on fresh	ar. egate: of fin optin gates.	e & c num r crete	noist	ure conte	ent of f		
		IV. Test on harder	ned concrete	, tiles	& br	ricks				
 13. Determi 14. Determi 15. Determi 16. Determi 	nation of nation of nation of nation of Iours : 0	Compressive strength o f Flexural strength of co f Splitting tensile strength f water absorption and fl f water absorption and co Total Tutorials : 0 Student should able to to test their propertie properties of fresh and	h of concrete h of concrete lexural strengt rushing streng Total Pra conduct suit s as per BIS	th of actical able e and	bricks Class experi to co	s. s : 45 ment		structi	on ma	

Department :	Civil 1	Engineering		Programme : B.Tech. Civil Engineering							
			Sem	ester V	V						
Course Cod	_	C	ourse Name		Hou	rs / W	7eek	Credit	Max	imum	Marks
Course Cou	e	C	ourse maine		L	Т	Р	С	IA	UE	Total
HS P54		GENERA	L PROFICIENCY	′ -I	0	0	3	2	100	-	100
Objective (s)		 To improv To help th To enhanc To ensure 	he communication a ve their Listening, Sp the students to get ric the employability p the personality devo te the students' entr	peakin l of th prospe elopm	g, Rea e inhib ects of ent of	ding a pitions stude the st	nd wr and c nts udents	iting skis communic s by sha rp	IA UE To 100 - 1 ats is of students 1 is of students is of students 1 incate with ease. . . rpening their soft sk m holistically . of Body Language – . . Time Management Skills . . of writing – Resour . . – Presentations . .	ft skills	
Unit -I	Art	Of Commun	ication				hrrf				
Effective Liste Unit - II : Attitude – Sel Skills – Surviv Unit – III	f-Con ing St	– Feedback oduction To fidence – Lea ress – Overco ting	Soft Skills dership Qualities – oming Failure – Pro	Emoti fession	onal Q 1al Eth	Quotien nics — I	nt – E Interp	ffective T ersonal Sl	'ime Ma kills	anagem	ent
1		0	vs Spoken Languag r and Usage – Voca	_				-	f writin	g – Res	sources
Unit – IV	Spea	aking Praction	ce								
Dialogue – Te	lepho	one Etiquette -	– Public Speaking –	Deba	te – In	forma	l Disc	ussions –	Presen	tations	
Unit – V	Apti	itude									
Verbal and N	umerio	cal aptitude									
Total Contact			Total Tutorials : 0	To	tal Pra	ctical (Class :	45	Т	'otal He	ours :45
Programme	Out c	ome	On successful com 1. Become good of sharpen their wri various perspective	comm ting s	unicate	ors, 2.	Imbil	be the rea	quisite s	soft ski	lls, 3.

VI SEMESTER

Department : C	ivil Engineerin	o Pr	-		B.Tech.	Civil Eng	vineering);	
		Semester	·····				5	2	
Course code	(Course Name	· · · · · · · · · · · · · · · · · · ·	ours/W	Veek	Credit	CIAUETo4257510ence lines in determinate aesTotal Hou:ortening, temperature effTotal Hou:ortening, temperature effTotal Hou:Moving loads —single andosolute maximum bendingTotal Hou:Total Hou:Total Hou:orter in a determinatioTotal Hou:Total Hou:Solution - Shape factor - UTotal Hou:Total Hou: </td <td>Marks</td>	Marks	
			L	T	P				Total
CE T61	STRUCT	URAL ANALYSIS - II	3	1	0	4	25	75	100
Objectives	indetermin 2. To familia	p an understanding of the nate beams rize the students with analy uce the concept of plastic a	ysis o	f arche	s and c	ables	nes in de	etermin	ate and
UNIT -I	Arches and C	Cables						Total	Hours : 9
Theory of arch	es - Analysis d	of three hinged and two h	ningeo	d arche	es - rib	shorteni	ng, tem	peratur	e effects.
Analysis of forc	es in cables - S	uspension bridges.	0				0	-	
UNIT -II	Influence lin	es for determinate struct	ures					Total	Hours : 9
ILD for simply	supported and	l cantilever- shear, moment	t and	suppor	t reacti	on. Movi	ng loads	s –single	e and
several point lo	ads – maximun	n bending moment and ma	ximu	m shea	r force	–absolute	e maxim	um ber	nding
moment - deter									
UNIT -III	Influence lin	es for indeterminate stru	cture	s				Total	Hours : 9
Influence lines	– Müller-Bres	lau Theorem - principle :	and i	ts app	ication	. Influen	ce lines	for co	ntinuous
beams. Introdu	ction to bridge	e floor system- ILD for th	russ r	eaction	n, mem	ber force	es and d	letermi	nation of
maximum force	es								
UNIT -IV	Plastic Analy	vsis						Total	Hours : 9
		Load Factor – Plastic Hin blastic analysis of beams and			nt redi	stribution	- Shape	e factor	– Upper
UNIT -V	-	to Matrix methods of Ar						Total	Hours : 9
					exibility	matrices	- prope		
		matrix relationship- compa	arisor		fness a		ility met	hods.	
Total Contact F	·····	matrix relationship- compa Total Tutorials : 15		n of stif		nd flexib			: 60
Total Contact F	·····	Total Tutorials : 15 T	otal P	n of stif Practica	l Classe	nd flexib es: 0	Total	Hours	
Total Contact F Programm	Iours: 45	÷	otal P velop	n of stif Practica o and aj	l Classe oply int	nd flexib es: 0 fluence lin	Total nes in str	Hours ructural	analysis.
Programm	Iours: 45	Total Tutorials : 15TStudent should able to de	otal P velop	n of stif Practica o and aj	l Classe oply int	nd flexib es: 0 fluence lin	Total nes in str	Hours ructural	analysis.
Programm Text Books	Iours: 45 e Outcome	Total Tutorials : 15TStudent should able to deThe students should also	otal P evelop be ab	n of stif Practica o and ap ole to ap	l Classe oply inf oprecia	nd flexib es: 0 fluence lin te plastic	Total nes in str theory c	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S.I	Hours: 45 e Outcome B.,Shah. H.J.,,	Total Tutorials : 15TStudent should able to deThe students should also"Mechanics of structures"	otal P evelop be ab Vol.	n of stif Practica o and ap ole to ap II. Cha	l Classe oply inf oprecia	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S.I 2. Punmia. B. C	Hours: 45 e Outcome B.,Shah. H.J.,, ., Jain, A. K., a	Total Tutorials : 15 T Student should able to de The students should also "Mechanics of structures" nd Jain, A. K., Strength of	otal P evelop be ab Vol.	n of stif Practica o and ap ole to ap II. Cha	l Classe oply inf oprecia	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S. 2. Punmia. B. C Vol. II, Laxm	Hours: 45 e Outcome B.,Shah. H.J.,., , Jain, A. K., a ni Publications	Total Tutorials : 15 T Student should able to de The students should also "Mechanics of structures" nd Jain, A. K., Strength of	otal P evelop be ab Vol.	n of stif Practica o and ap ole to ap II. Cha	l Classe oply inf oprecia	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S.I 2. Punmia. B. C Vol. II, Laxm Reference Boo	Hours: 45 e Outcome B.,Shah. H.J.,, C., Jain, A. K., a hi Publications bks	Total Tutorials : 15TStudent should able to deThe students should also"Mechanics of structures"nd Jain, A. K., Strength of(P) Ltd., 2012.	otal P velop be ab Vol. Mater	n of stif Practica and ap le to ap II. Cha rials an	l Classe oply inf oprecia trotar p d Theo	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S.I 2. Punmia. B. C Vol. II, Laxm Reference Boo 1. Wang. C. K	Hours: 45 e Outcome B.,Shah. H.J.,., ., Jain, A. K., a ni Publications oks ., Intermediate	Total Tutorials : 15TStudent should able to deThe students should also"Mechanics of structures"nd Jain, A. K., Strength of(P) Ltd., 2012.Structural Analysis, Tata M	otal P velop be ab Vol. Mater Ic Gr	n of stif Practica o and aj le to aj II. Cha rials an aw Hil	l Classe oply inf oprecia arotar p d Theo l, 2013	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis.
Programme Text Books 1. Junnarkar. S.I 2. Punmia. B. C Vol. II, Laxm Reference Boo 1. Wang. C. K 2. Russell C H	Hours: 45 e Outcome B.,Shah. H.J.,, ., Jain, A. K., a hi Publications bks ., Intermediate ibbeler, Structu	Total Tutorials : 15TStudent should able to deThe students should also"Mechanics of structures"nd Jain, A. K., Strength of(P) Ltd., 2012.Structural Analysis, Tata Naral Analysis, Pearson Educe	otal P velop be ab Vol. Mater Ic Gr	n of stif Practica o and ap le to ap II. Cha tials an aw Hil o Ltd., 2	l Classe oply inf oprecia arotar p d Theo l, 2013	nd flexib es: 0 fluence lin te plastic publishers	Total nes in str theory o	Hours ructural	analysis
Programme Text Books 1. Junnarkar. S.I 2. Punmia. B. C Vol. II, Laxm Reference Boo 1. Wang. C. K 2. Russell C H 3. Khurmi. R.S	Hours: 45 e Outcome B.,Shah. H.J.,, Jain, A. K., a hi Publications bks ., Intermediate ibbeler, Structu S., Theory of S	Total Tutorials : 15TStudent should able to deThe students should also"Mechanics of structures"nd Jain, A. K., Strength of(P) Ltd., 2012.Structural Analysis, Tata M	otal P velop be ab Vol. Mater Ic Gr cation pany,	n of stif practica o and ap le to ap II. Cha rials an aw Hil 1 Ltd., 2 2012.	l Classe oply inf oprecia arotar p d Theo l, 2013 2013	nd flexib es: 0 fluence lin te plastic publishers ry of Stru	Total nes in str theory o	Hours ructural	analysis

Department :	Civil Engineer		amme : F	8.Tec	h. Ci	vil Engine	ering		
<u> </u>		Semester VI	TT	/ 11/	1_	Curlis	M	•	٦ 1
Course		Course Name	Hours L	/ W	еек Р	Credit C	IMax IA	···•	Marks Total
Code CE T62	CEOTECH	NICAL ENGINEERING - II	L 3	1	P 0	4 2	1A 25	EA 75	10tai 100
CE 102	······	e the students with a basic und	<u>i</u>			1	<u>l</u>	<u>i</u>	. <u></u>
Objective (s)	2. Introdu the choused for 3. To fam	nnical site investigation. ice to the students, the principal pice of the most suitable type of or : a) bearing capacity estimation illiarize the concepts of earth pr ine stability of slopes.	types of of found 1, b) Pile	four ation carry	ndatio for ing c	ons and th a given s apacity.	e facto olutior	ors go 1. pro	verning cedures
UNIT – I	Soil Explora	÷					Т	atal H	ours:9
		ng, stages - depth and spacing	of soil e	volor	ation	metho			
		g method – Insitu tests – SPT, C							
UNIT – II	Lateral eart		11, 101	, pre	sourc				ours:9
		ressure at rest, Rankine and C	Coulomb'	s the	orv	– Rebhar			
		k fill, line load and earth quake							
1		of braced excavation (concept of				1		0	
UNIT – III	Shallow fou	Indation					Т	otal H	ours:9
moments and only). UNIT – IV Introduction- (problems) –	earthquake loa Pile founda classification-	selection criteria- Individual ca rying capacity - pile group – gr	n settlerr	ient. apaci	Meth ty- s	tatic and	crease To dynar	BC (C otal H nic ap	Concept ours : 9 oproach
UNIT – V	Stability of						Te	otal H	ours:9
	1	- stability of infinite slope – la problems) – Reinforced slopes.	ndslides	Fini	ite sl	ope analy	sis - S	wedis	h circle
Total Contact	Hours: 45	Total Tutorials : 15 Tota	l Practica	l Cla	ss : 0	Tota	Hour	s:60	
Programme	Outcome	To develop an understanding structures and to gain knowled practical problems.						0	0
Text Books									
,	1	les of Foundation Engineering, , Soil Mechanics and Foundatio	00			0	· ·	/	
Reference Bo	ooks								
 Varghese Murthy. V 	P.C. Foundatio .N.S., A Text I	es & Foundation Engineering, St on Engineering, Prentice-hall of Book of Soil Mechanics & Foun- nia, B.C., Soil Mechanics and for	India Pvt dation E	:. Ltd ngine	, 201 ering	2. g, CBS pul			3

Department : Civi	il Enginee r i	ng	Program	nme :]	B.Tec	ch. Civi	l Engine	ering		
		Sen	nester VI							
Course Code		Course Name		Hou	rs / \	Week	Credit	Max	imum I	Marks
Course Code		Course Name		L	Т	Р	С	IA	UE	Total
CE T63		TRANSPORTATION ENGINEERING II		3	1	0	4	25	75	100
Objective (s)		e the students with a ba uce to the students, the			_		2	modes	of trai	nsport.
UNIT – I								T	otal Ho	ours:9
		mponents of permanen irements; Ballast – func						fasten	ings.	, creep
Geometric design negative cant tran		ack – gradients, grade Problems on geometric	1	ation,	spee	d, supe	er-elevatio	on, cai	nt defi	ciency,
UNIT – III										ours:9
		outs, switches, crossing ailway station, classificat							tations	- site
UNIT – IV				, j		-71	,		otal Ho	ours:9
		characteristics –airpor n.	t planning	g, ob	struc	tions,	types of	airpor	t, Win	
	_	rections. Design of exit n LCN & PCN	taxiway,	Runwa	ay ma	arking	and lighti			
Total Contact Ho	urs : 45	Total Tutorials : 15	Total I	Practic	al Cla	ıss : 0		То	tal Hou	1rs : 6 0
Programme Out	come	The student should Engineering & Airport			e ba	isic de	finitions	regard	ding I	Railway
Text Books										
		, Arora.M.G., Airport Pl ra. S.P., Text Book of I	0		<u> </u>					?) Ltd.,
Reference Books										
 Subhash C Sat Agarwal, M. N 	xena, Àirpo M., Agarwal,	ck Engineering, Tata M ort Engineering Planning , M. M, Indian Railway t	g & Design rack, Stan	n, CBS dard P	Publ					
4. Kristi, Lal, Tra	ansportation	n Engineering, PHI, Ne	w Delhi, 2	2008.						

Department : Civ	vil Engineeri	ng	Programm	ie : B.	ГЕСН	. Civil Eng	gineerin	ıg		
		Sen	nester VI							
Course Code			Ηοι	ırs / V	Veek	Credit Max		ximum Marks		
Course Code		Course Name	L	Т	Р	С	IA	UE	Total	
CE P61		NSPORTATION INEERING LAB	0	0	3	2	50	50	100	
Objective (s)	1. To dev	. To develop an understanding of the highway material.								
Objective (8)	2. Famili	arize the students wit	th various	test pi	ocedu	ires a per				
Cycle – I	Tests on	soil and granular m	aterial							
Optimum water of	content of s	oil, CBR test on the s	soil, tests o	on the	GSB a	and WMM	[
Cycle – II	Tests on	Aggregate								
Crushing value	test, impac	t value test, Specifi	c Gravity	and	water	absorptio	on test,	flakin	ess and	
elongation test, a	ngularity tes	t,				-				
Cycle – III	Tests on	Bitumen								
Penetration test,	softening po	oint test, ductility test	, specific g	gravity	test, f	lash point	test, vi	scosity	test.	
Cycle – VI	Tests on	Bituminous mixes								
Testing of BM, S	DBC of mix	tes, arriving at Optim	num bitum	inous	conte	nt.				
Total Contact He	ours:0	Total Tutorials : 0	Total Pra	ictical	Class	: 45	Г	'otal Ho	ours : 45	
Programme Ou	t come	The student should	have learn	nt to c	haract	erize vario	ous high	way ma	iterials	

Department : Civil I	Engineering		·····		: B.T	ech. C	ivil Engin	eering		
		Semest	ter V	Ι						
CE P62 VALUATIO 1. To study the typ 1. To study the typ		Course Name		Hou	rs / W	/eek	Credit	Max	kimum l	Marks
Course Code		Course Manne		L	Т	Р	С	IA	UE	Total
CE P62		ΓΙΟΝ COSTING AN LUATION LAB	D	2	0	3	2	50	50	100
Objective (s)	2. To stuc	ly the types of estimatic ly the analysis of rates a ly the method of valuat	ind ty	pes o	f spec	ificatio	on			
UNIT I In	ntroduction									
estimation – Examp UNIT II Esti	oles using abo mation of b									
washing, Color was buildings with flat re	hing and pai	nting for shops, single	1							
UNIT III Esti	mation of o	ther structures								
line – Tube well – (Open well –	pit – Sanitary and water Estimate of bituminous RCC works in arches -	s and	ceme	ent con	ncrete	roads – V	arious	types o	
UNIT IV Spec	cification an	d rate analysis								
Earthwork excavation Flooring- Painting of Analysis of rate – materials for different	on – Cemen of wood worl Purpose – 6 ent works – 6	c principles of general t concrete – Damp pro k. Quantity of materials f Obtaining the rate for c C- Brick masonry – Pla	oof co per u liffer	ourse init ra ent w	– For ate of orks u	m wo: work sing le	rk – Brick – Requin ocal sched	and st	one ma of labo	sonry – our and
UNIT V Valu	ation									
Valuation – Purpos Gross income, net	e, definition income, out preciation n	of common terms use tgoings, sinking fund, s nethods – Valuation o Valuation of land.	scrap	value	e, salv	age va	alue, marl	ket valu	ie, bool	k value,
Total Contact Hour	s:30	Total Tutorials : 0	Tota	l Prac	tical (Class :	45	Т	'otal Ho	ours : 75
Programme Out co	ome	Based on PWD PSR of to prepare the detailed			1					be able

ŧ	Civil Engineeri		<u> </u>	me: I	3.Tech	. Civil En	gineerin	ıg	
		Semeste	er VI						
Course code		Course Name	Но	Hours/Week		Credit	Max	imum l	Marks
Course code		Course Name	L	Т	Р	С	IA	UE	Total
CE P63	COMPUTE	R AIDED DESIGN LA	B 0	0	3	2	50	50	100
Objectives	. 0	c knowledge in modelling ze and give hands on train				g wok she	eets and	databa	ises.
editing too processor 2. Analysis of settlement 3. Analysis of industrial 4. Analysis of settlement	ols, load and sup and report generation of continuous be and moving lo of trusses – lac trusses. of rigid jointed of, moving loads opics- 3-D mod	eams- beams with differ	turing o ent load stresse f loads, hybrid s	f outj ls, int s, wit inclit tructu	put file ternal nd load ned su	e. Types o hinges, el d generati pports, el	f analys astic su ion, mo astic su	is, use o pports, oving lo pports,	of post suppo oads an suppo
6. Compariso	Hours: 0	Total Tutorials : 0	Total Pr	actica	1 Class	es · 45	Total	Hours	4 =

Department : C	Civil Engineeri	ng	Prog	ramme	: B.Te	ch. Ci	vil Engine	ering			
		S	emester				-				
Course Code		Course Name		Hou	rs / W	leek	Credit	Max	- 10 nce other activition English – Organizing a Total Hou	Marks	
Course Code				L	Т	Р	С	IA	UE	Total	
HS P64	GENER	AL PROFICIENCY	Y-II	0	0	3	2	100	-	100	
		op the students' critic		0	5						
	: 1	e students to equip t				ecessa	ry skill set	s.			
Objective (s)		ve the students' problem solving skills									
Objective (s)	· · ·	e students to prepare					em with co	onfiden	ce		
			students industry-ready and employable e students to be more participative in Group Discussions and other activ								
			iore par	ticipativ	ve in C	Group	Discussion	ns and o	other ac	tivities.	
Unit – I : Com	position Ana	llysis									
Technical and I	Non-Technica	l Passages (GRE Bas	ed) – D	ifferen	ces in .	Ameri	can and B	ritish E	nglish –		
		es – Expanding Terr	/						0		
Unit – II : Writ	ing	1 0		-							
Job Application	n Letter Writin	g – Resume Writing	Unit –								
III : Oral Skill		0									
	• T		7 T	W 7	1	NT	· · · 01	•11 /	<u>``</u>	•	
-		luction and Practice	e - 1ea	am Wo	ork –	Nego	tiation Sk	111s — (Organiz	ing and	
Attending Mee	0 0										
Unit – IV : Ad	apting To Co	orporate Life									
Corporate Etiq	uette – Groon	ning and Dressing									
Unit – V : Apt	itude : Verba	l and numerical aptit	ude								
Total Contact I	Hours :	Total Tutorials : 0	Tot	al Prac	tical C	lass :			Total	Hours	
		On successful com	pletion	of the 1	modul	e stud	ents will b	e able to	:		
Programme O	ut come	Communic	1								
U		Confidentl	v face t	he place	ement	proce	SS				

Department : C	Zivil Enginee	ering	Program	me :	B.Tec	h. Civi	il Enginee	ering		
		Sem	ester VII							
Course Code		Course Name		Hou	rs / W	eek	Credit	Maximum Mark		
Course Code		Course Name		L	Т	Р	С	IA	UE	Total
CE SC7		SURVEY CAMP		0	0	3	2	100	-	100
Obiostino (a)	1. Be abl	to apply the Knowledge gained during the Surveying courses I & II								
Objective (s)	2. Able to	o take decisions to tackle t	the site spe	ecific	proble	ems				
Reconnaissance	e, selection of	of main stations- measuren	nent of ho	rizor	ntal and	d verti	cal angles	- measi	uremen	nt of
base line-deterr	nination of I	R.L. of main station by do	uble leveli	ng fr	om B.	M m	easureme	nt of be	earing o	of any
one line- comp	utation of c o	pordinates of station point	ts- plotting	g of c	letails-	interp	olation o	f conto	urs	
Total Contact I	Hours : 0	Total Tutorials : 0	Total P	racti	cal Cla	ss : 45		Тс	otal Ho	urs :45
Programme O	ut como	At the end of the Camp	the stude	ents s	should	be ab	le to und	erstand	l the pi	ractical
r iogramme O	ut come	implementation of theor	etical know	wledg	ge gain	ed in S	Surveying	; subjec	t.	

VII SEMESTER

Departmer	nt : C	ivil Engineer	ring	Program	mme :]	B.Te	ch. in (Civil Engi	neerin	g	
			Se	emester VII							
Course			Course Name		Hour	rs / V	Week	Credit	Max	imum	Marks
Code			Course Manne		L	Т	Р	С	IA	UE	Total
CE T71	I	DESIGN O	F STEEL STRUCT	URES	3	1	0	4	25	75	100
Objective	· · ·	(2) To	understand the princi understand the provi	sions in Co	01	1	2	w Codal j	•••••••••••••••••••••••••••••••••••••••		
UNIT – I			on to limit state des	<u> </u>							ours:9
			rs – single and comp d joints – design of jo					ices – de	esign o	of lug	angles.
UNIT – I	I	Compressio	on Members						To	otal Ho	ours:9
0		•	ntrically loaded mem Design of column bas		up col	umn	s, Des	ign of La	acings	and B	battens,
UNIT – I	II	Design of f	lexural members						То	otal He	ours:9
Laterally su	uppoi	ted and uns	upported members de	esign of pur	lins.						
UNIT – I	V	Design of t	ouilt-up Beams						То	otal He	ours:9
Design of	gantr	y girders and	l plate girders.								
UNIT – V	7	Design of I	Eccentric Joints						То	otal Ho	ours:9
Design of	eccen	itric joints by	v bolting and welding	– design of	stiffen	ed ar	nd unst	iffened so	eated c	onnec	tions.
Total Cont	tact F	Iours : 45	Total Tutorials : 15	Total	Practic	al Cla	ass : 0		Tot	tal Hot	urs : 60
Programn	ne O	utcome	At the end of the co capability in simple p			woul	d deve	lop confi	dence	and ad	lequate
Text Bool	ks										
Ltd., D	Delhi,	2013.	cate Design in STRU							0	
		s, Pune, 2012								,	
Reference	: Boo	ks									
2. Bhavik 2014.	atti, S	S.S., Design o	of steel structures, O of Steel Structures, IK Steel Structures, Pear	Internation	nal Pub	olishir	ng Hoi		td, Nev	w Delh	u,

Virendra Gehlot, Ram Chandra, Design of steel structures, Vol.I & II, Standard Publishers, 2012.

Department : C	ivil Engineeri		Programme	e : B.	TE	CH. C	ivil Engir	neering		
		Semes	ter VII							
Course Code		Course Name	He	ours ,	/ W	/eek	Credit	Max	imum I	Marks
Course Code			L		Т	Р	С	IA	UE	Total
CE T72	RESOU	OLOGY AND WATER RCES ENGINEERIN(G ⁴		0	0	4	25	75	100
Objective (s)	To understa estimation th	nd the various physical 1 nereof.	processes i	n the	e hy	drolog	gic cycle	and th	e meth	ods of
UNIT – I	Precipitatio	n						То	tal Hou	urs : 12
Hydrologic cy	cle, precipita	tion, stream flow, eva	poration,	trans	spira	ation	and inf	iltratior	n, type	es and
measurement o	f precipitation	n, gauge networks, hyeto	graphs, ave	erage	de	oth of	precipita	ation o	ver the	basin,
mass rainfall cu	rves, intensity	duration curves - estimat	tes of missi	ng da	ita a	Ind adj	ustment	of reco	rds.	
UNIT – II		spiration and Infiltration								urs : 12
Evaporation, fa		g, measurement and esti		evap	ora	tion, t	ranspirati	ion, fac	tors af	fecting
-		spiration, methods of e		-			-			0
		nfiltration indices.	0	1		1	,			0
UNIT – III	Groundwat	er						Т	'otal Ho	ours:9
Occurrence and	d movement (of ground water, Darcy's	law, aquife	rs –	type	es and	specific	vield o	f aquife	ers and
		in wells in confined and								
well.				1.		-,		-1	I	-)
UNIT – IV	Runoff							То	tal Hoi	urs : 12
Factors affectin	ig runoff, Hyd	drograph analysis – Unit I	hydrograph	theo	ory	and ar	alysis, St	pace di	stributi	on and
	0	low measurement – select	. 0 1		-			L		
		bability Concepts : Rainfa			-		0			
Elements of sto		7 1	1			1			2	
UNIT – V	Floods							То	tal Hoi	urs : 12
Design flood, e	estimation by	empirical and statistical i	methods, F	Flood	co	ntrol I	Measures	– Lev	ees and	1 flood
		voirs, Water shed mana								
		Planning for Water Reso								
•	• /	, multipurpose projects.		1			× 1	, ,	,	,
Total Contact H	K	Total Tutorials : 0	Total Prac	ctical	Cla	ss : 0		То	tal Hoi	urs : 60
		At the end of the cours	se the stud	ent s	hou	ıld be	able to e	estimate	e the ef	fective
Programme O	ut come	rainfall, flood magnitude								
Text Books										
	kumar Garg	Hydrology and Water Res	sources En	oinee	ring	. Kha	nna Publ	ishers.	2013.	
	rayana murthy	v.C., Water Resources Eng		0						ational
Reference Boo										
		neering Hydrology, Tata M	IcGraw-Hi	11 20	13					
		heering Hydroloy, Nem Cl								
		'e Chow, David R Maidmo					'ata McG	raw_H	11 2012	,
J. Latty W	ways, ven 1	C GHOW, David K Malullio	. n, nppneo	arry	u10.	iogy, I	ata MCG	1aw-111	ш, 2012	

Jayarami Reddi.P, Text Book of Hydrology, Lakshmi Publications, 2013.

Department : C	ivil Enginee	ering	Programn	ne : B.T	'ech. Civ	il Engine	ering				
		Seme	ester VII								
Course Code		Course Name	H	lours /	Week	Credit	Max	imum 1	Marks		
Course Coue		Course manie	Ι	Γ I	' P	С	IA	UE	Total		
CE P71	DES	SIGN AND DRAWING	2	0	3	2	50	50	100		
		(RCC & STEEL)		0	5	4	50	50	100		
	1. To prep	are working drawings for steel and concrete structures.									
Objective (s)	· ·	tion of layout of the struct			0						
Objective (s)	-	tion of working drawings v	with all dim	ensions	s require	d for exec	ution /	' fabric	ation		
	of structur	es.									
		wing of the following R	CC elemer	ts/Str	uctures						
1		ns and slab systems.									
		bined footings.									
	lever retaini	8									
:		r and rectangular water tar	nks (exclud	ing stag	ging)						
5. Stairc											
	<i>_</i>	wing of the following St	eel elemer	ts/Stru	actures						
		joints including purlins .									
		seat connections - moment	nt resisting	welded	connec	tions for b	beams.				
:	ed plate gird	er.									
1	4. Gantry girder.										
	upporting c										
Total Contact H	Hours: 30	Total Tutorials : 0	Total Pr			i			ours :75		
Programme O	An ability to design, draft and detail various concrete and steel structures /										
Programme Out come members.											

Department : C	Zivil Enginee	ering	Programme : B.Tech. Civil Engineering								
		Seme	ester VI	Ι							
Course Code		Course Name		Hours / Week		Credit	Max	imum I	Marks		
Course Code		Course Maine		L	Т	Р	С	IA	UE	Total	
CE CV7	COMP	REHENSIVE VIVA VO	CE	0	0	3	2	50	50	100	
Objective (s) To verify the overall knowledge that the student has gained during the course											
internal assessn will conduct tw external univers	nent for a to o written ex sity examina	for his understanding of ba otal of 50 marks will be ma kaminations of objective or ution, which carries a total ernal examiner and one inte	ade by z r short of 50 m	in inter questio narks, w	nal ass ns type vill be a	essme e from a Viva	nt comm the all th Voce exa	ittee. T ne core aminati	he con subjec on con	mittee ts. The	
Total Contact I	Hours:0	Total Tutorials : 0	Tota	l Practi	cal Cla	lss : 45		To	otal Ho	urs :45	
Programme O	Programme Out comeThe students will be able to attend the various Competitive examinations such as GATE, IES examination etc.										

Department : C	Civil Enginee	ering	Programme : B.Tech. Civil Engineering													
	Semester VII Open Colspan="2">Hours / Week Credit Maximum Marks															
Course Code		Course Name		Hours / Weel		eek	Credit	Max	imum I	Marks						
Course Code		Course maine		L	Т	Р	С	iA	EA	Total						
CE PW7	P	PROJECT PHASE - I		0	0	6	6	100	0	100						
Objective (s) The students are encouraged to get hands on experience to work in various area of civil engineering.																
members in ea area of Civil E	ch group on Engineering. problem and	ign project is to enable a project involving analy Each project shall have form a methodology of 100 marks.	rtical, exp a guide.	perimer The s	ntal , d tudent	esign (is rec	or combin puired to	nation o do lite	of these rature	e in the survey,						
Total Contact H	Hours:0	Total Tutorials : 0	Tota	l Practi	cal Cla	ss : 90		Te	otal Ho	ours :90						
Programme O	ut come	The students will be abl	e to perc	ceive th	e prob	olems a	nd to fin	d suital	Programme Out come The students will be able to perceive the problems and to find suitable solutions							

VIII SEMESTER

Department : (Civil Enginee	ring Progr	amme :	B.Tec	h. Civi	il Enginee	ering		
		Semester VI	Π						
Course Code		Course Name	Hou	rs / W	/eek	Credit	Max	imum I	Marks
Course Code		Course maine	L	Т	Р	С	IA	UE	Total
CE T81	CONSTR	UCTION MANAGEMENT	4	0	0	4	25	75	100
Objective (s)	2. To bec	erstand construction management ome aware on organization, plans ly the M.I.S and labour, safety an	ung, scl	heduli	0	analysis			
Unit – I	Constructi	on Project Management					Т	otal Ho	ours: 12
	, , ,	ect Categories, Management obje Team-Role of Project Manager-M				Project D	evelop	ment P	rocess-
Unit-II C	Organization	n and Planning					Т	otal He	ours: 12
	0	anization, Principles of Organiz ad Delegation –Forms of Organiz		1		<u> </u>			Control,
Unit-III	Scheduling	g and Network Analysis					Т	otal Ho	ours: 12
0	,	ectives, Importance of Planning, Construction Management- Bar		0		0	CPM,	Time	& cost ours: 12
	e Contractor	t document, Specification, Cond - Arbitration-M.Book-Muster rol lications and Construction			act, To	ender and			ments- ours: 12
0	itions-Safety	in Construction: Objectives, S and Hazards, Accidents- Causes	1		y Proş	gramme,	Safety	Costs,	Safety
Total Contact	Hours : 60	<u>i</u>	l Practi						ours :60
Programme C	ut come	One should aware on impor various influence factors in the					igemer	nt havi	ng the
Text Books									
2	2	raig Knutson, Construction Man Istruction Planning & Manageme	0			,			, 2011.
Reference Bo	oks								
Hill, 2014. 2. Shrivastava 3. Kumar New	. U.K, Const eraj Jha, Con	ction Project Management Plan truction Planning & Management Istruction Project Management T nurthy.K.G., Construction & Pro	, Galgo heory &	otia Pu & Prac	blicatio tice, P	ons Pvt. L earson Ec	td.,201 lucatio	4. n Ltd.,	

Department : Civ	il Engineering		Progra	mme : I	3.Tech.	Civil I	Engineerin	g		
		Seme	ester VII							
Course Code		Course Name			rs / We		Credit		imum N	
				L	Т	Р	С	IA	UE	Total
CE P81	PROF	ESSIONAL ETHICA PRACTICE	L	4	0	0	2	100	-	100
Objective (s)	codes c	tte an awareness of ethic of conduct rease the ability to recog								-
UNIT – I										urs : 12
Fundamental D		re – Preamble - Funda www.of.articles & Schedu		Rights	– Dire	ective	Principle		1	
UNIT – II								Т	otal Ho	urs : 12
		: Moral Sensitivity – M Check points – Steps – M	5	0	nt – M	oral N	Aotivatio	n – Me	oral Co	ourage.
UNIT – III								Т	otal Ho	urs : 12
		ed to Engineering – Ch onal Code of Ethics – IE			f Profe	ssiona	l and P	rofessio	onal Et	thics –
UNIT – IV								T	otal Ho	urs : 12
public – Risk an		y – Responsibility to E	mployer	– Rigł	nts of I	Engin	eers – Re	-	-	
UNIT – V								Т	otal Ho	urs : 12
Responsibility to	owards Envir	onment. International E	Ingineeri	ng Pro	fession	alism				
Total Contact H	Iours : 60	Total Tutorials : 0	Tota	Practio	cal Clas	ss : 0		To	tal Hou	ırs : 6 0
		1. The students will b	e expos	ed to th	ne ethic	cal pra	ctices in	Civil E1	ngineer	ing.
Programme Ou	t come	2. The student will be	e aware t	o dutie	s and r	espon	sibilities	as a citi	zen	0
0		3. Educated in identif				1				
Reference Book	S	<u>i</u>	<u>, </u>	¥						
1. Charles	E Harris Jr, I	Michael S Pritchard, Mi	chael J	Rabins,	Engin	leering	g Ethics (Concep	ts and	Cases,
	e Learning 20		-		U			1		
2. Mike W 2012	.Martin, Rola	and Schinzinger, Ethics	in Eng	ineering	3, Tata	MaG	raw Hill	Educa	tion (P) Ltd.,

Department : Ci	vil Engineering	Programme :	Programme : B.Tech. Civil Engineering								
		Semester VIII									
Course Code	Course Name	Hou	rs / W	eek	Credit	t Maximum Mark					
Course Code	Course Maine	L	Т	Р	С	IA	UE	Total			
CE IV8	INDUSTRIAL TRAINING/INTERNS	SHIP -	-	-	2	100	_	100			
Objective (s)											
industrial visits (se of study from 3rd to 7th sem (or) undertake a minimum of for ort, which shall be evaluated 1 0 marks.	ur weeks of industr	y/field	traini	ng. The s	tudents	s are ex	pected			
Total Contact H	ours : 0 Total Tutorials : 0	Total Practical	Class :	160	Т	'otal Ho	ours:1	60			
Programme Ou	After the Training confidence, so that				hould ha	ave de	velope	d self-			

Department : C	ivil Enginee	ering	Programme : B.Tech. Civil Engineering										
		Seme	ester VI	Π									
Course Code		Course Name		Hours / Week		Credit	Max	imum I	Marks				
Course Code		Course maine		L	Т	Р	С	IA	UE	Total			
CE PW8	PROJ	ECT WORK – PHASE-	II	0	0	9	8	50	50	100			
Objective (s)													
Project	Project work phase II will be an extension of the project work Phase-I started in the seventh semester.												
On completion	of the wo	rk, a project report shou	ıld be p	orepare	d and	submi	itted to t	he dep	artmer	nt. The			
project work an	id the repor	t will be evaluated by an ir	nternal	assessm	nent co	mmitt	tee for 50	marks	. The e	xternal			
university exan	nination, w	hich carries a total of 5	50 mar	ks, wil	l have	repo	rt evalua	tion a	nd viva	a voce			
examination co	nducted by	a committee of one extern	nal exar	niner ai	nd one	interr	nal exami	ner app	ointed	by the			
University.	-									-			
Total Contact H	Fotal Contact Hours : 15Total Tutorials : 0Total Practical Class : 135Total Hours :135												
Decomposition of O	Students by the end of the					f the course would have confidence to tackle any problem							
Programme Out come in the field and will become employable.													

ELECTIVE SUBJECTS

Department : C	ivil Enginee			B.Tec	h. Civi	l Engine	ering		
		ELECTIVE SU		/ W		C 1'.4	<u>م</u> ر	• 7	V f1
Course Code		Course Name	Hou L	rs / W T	еек Р	Credit C	IA IA	imum I UE	Total
CE E01		GN OF PRESTRESSED CRETE STRUCTURES	3	1	0	4	25	75	100ar 100
Objective (s)	2. To ana	ke the students understand the b lyse a few important pre stressed iderstand the various codal pr ires.	d concre	te elen	nents				
Unit – I	Basic Prin	nciple of preadressing					٢	lotal H	ours: 9
Introduction-Pr balancing metho Unit – II	od.	pre-stressing-Materials-Losses-S	ystems c	of pre-	stressi	ng-Simple		-	s-Load
	nate Streng	sioned beams-Principles of desi th of pre-stressed concrete bear od.	0	0					
Unit – III	Deflecti	ons and Composite Beams					٢	lotal H	ours: 9
		concrete members – Methods c nents-Analysis and Design of co				iples of p	oartial _I	ore-stre	ssing –
Unit-IV	Axial a	nd Circular prestressing					,	lotal H	ours: 9
Design of Tens –IS-Code provi		npression members-Circular pre	-stressin	g-Pipe	s- Wat	er Tanks	- Analy	sis and	design
Unit- V	Prestre	ssed continuous Beams					-	Fotal H	ours: 9
Analysis of cor Concordant cab		ams –Primary moment-seconda	ry mom	ent-ca	ble lay	out-Line	ar Trai	nsform	ation –
Total Contact H	Iours : 45	Total Tutorials : 15 Tot	al Practi	cal Cla	.ss:0		Te	otal Ho	ours :60
Programme O	ut come	The student shall have a basic design of beams, bridge element				prestresse	d conc	rete ele	ements,
,	,	ressed Concrete, Tata McGraw- ndamentals of Prestreesed Conc	Hill, 201	3.		npany (P)	Ltd.,2	013.	
Reference Boo									
,	,	palan.N, Prestressed Concrete, N seed Concrete Structures, Oxford			0	use, 2013	b .		
3. Pandit. G.S,	Gupta. S.P.	, Prestressed Concrete, CBS Pub s, Design of Pre-stressed Concre	lishers a	nd Dis	stribute			13	
T. 1411. 1.1., 1		s, Design of The Stressed Collect	in outer	urcs, J			5115, 20	1.J.	

Department :	Civil Engineer		Programm		Tech	. Civil	Engineer	ing		
Course		ELECTIVI	E SUBJE		rs / V	Week	Credit	Max	imum	Marks
Code		Course Name		L	T	P	C	IA	UE	Total
CE E02	COA	STAL AND OFFSHORI STRUCTURES	£	4	0	0	4	25	75	100
Objective (s)	 Introduc and harb To deve 	luce the various component e to the students, planning ours. lop an idea about types oncepts and foundation for	and designed and designed off offsh	gn prii ore st	nciple ructu	es of v	arious co	mpone		
UNIT – I	Growth of	Ports						To	tal Hou	ırs : 12
		cation of Harbours - Fac - Site investigation. Descr		0	0			Requ	iremer	nt of a
UNIT – II	Harbour Pl	anning (Technical):						To	tal Hoi	ırs : 12
terminal facili	ties – Essentia	tional Channel – Depth o ls of passenger terminal, d ional aids – Light house.				/		0		II U
UNIT – III	Harbour St	ructures						Τc	otal Ho	urs :12
- Loads - Se	lection and de	tion – Forces and – Desig esign principles of berthing ories. Types of dock struct	g structur	es –S	electi			0		. 1
UNIT – VI	Offshore St	ructure						To	tal Hou	ırs : 12
• •		s – selection – function - P action – Loads and respons	•				geotechr	nical as	pects o	of
UNIT – V	Constructio	on of Offshore Structures						To	tal Hou	urs : 12
		tructures – Introduction t, Moored floating structure	0				of offsho	ore pil	ed plat	forms,
Total Contact	Hours: 60	Total Tutorials : 0	Total Pr	actical	Class	s:0		To	tal Hou	ırs : 60
Programme	Outcome	Student will be familiariz planning designing coasta				0,	nd funda	menta	l conce	epts of
Text Books		I								
NIOT- Cl	hennai	roli, Harbour and Coastal Book of Offshore Engine	0	U V			,		k Vo	ol – II,
Reference Bo	ooks									
		on of Marine and Offshore esign and construction of P					McGraw	Hill Be	ook co	•

Department : C	ivil Engineeri	ng	Prog	ramme :	B.Tec	h. Civi	il Engine	ering		
		ELECTIV								
		C NI		Hou	rs / W	'eek	Credit	Max	imum I	Marks
Course Code		Course Name		L	Т	Р	С	IA	UE	Total
CE E03		RIAL WASTE DISPOS ND TREATMENT	SAL	4	0	0	4	25	75	100
	1.To have a	knowledge on the uses of	of wate	r by ind	ustries	;	<u>.</u>		<u>.</u>	. <u>.</u>
Objective (s)	2.To underst	tand the process involve	d in in	dustries	and th	ieir wa	ste water	produc	ction	
1	3.To learn al	bout the treatment of wa	iste wa	ter and	safe d	isposa	l of treate	ed efflu	ents	
UNIT – I	Introductio	n						То	tal Hou	urs : 12
Uses of water h	oy Industry -	Sources and types of wa	astewa	ters, qua	ality cr	iteria,	effluent	standar	ds- Ind	lividual
and common e	ffluent treatm	ent plants - Population	equiva	lent, Ēff	fects o	of indu	strial was	tes on	stream	s, land,
air and waste wa	ater treatment	: plants								
UNIT – II	Pretreatme	nt methods						То	tal Hou	urs : 12
Pretreatment N	fethods: Proc	ess modification – meth	nods ar	nd mate	rials c	hanges	s – Redu	ce, reus	se and	recycle
methods, house	e keeping etc.	to reduce waste discharg	ge and	strength	ı of th	e wast	e and est	ablishee	d metho	ods for
by products rec	overy within t	the plant operations	-	C						
UNIT – III		methods of industrial	wastes	3				То	tal Hou	urs : 12
Equalization -	Neutralizatio	on - Oil separation – I	Floatat	ion – I	Precipi	tation	-Adsorp	otion -	Aerob	oic and
		ent - High rate reactors								
Membrane tech										0
UNIT – IV	Treatment	methods of residuals						То	tal Hou	urs : 12
Residuals of Ir	ndustrial waste	e treatment —Characte	ristics	of sludg	ge – [Thicke	ning, dig	estion,	condit	ioning,
dewatering and	disposal of sh	udge.			5		0 0			0
UNIT – V	Case studie	:S						То	tal Hou	urs : 12
Industry and po	ower plants - r	nanufacturing process de	escript	ion - wa	stewat	er chai	racteristic	s and v	vaste	
		cal industries – Textiles -								
		al industries - Sugar and								clear
power plants.	_	_			-					
Total Contact H	Hours: 60	Total Tutorials : 0	Tota	al Practio	cal Cla	lss : 0		То	tal Hou	urs : 60
		An ability to use t	he rec	ent tecl	hnique	es, skil	lls, and	moder	n engin	neering
Programme O	ut come	practices to solve pr	oblem	s related	d to It	ndustri	al Waste	Water	manag	gement
109.00000	at come	and Disposal.							-	-
Text Books		L								
	W.W., Indust	rial Water Pollution Con	ntrol, N	lcGraw	Hill, 2	000.				
		Freatment for Pollution (l. 2008.			
Reference Boo			_							
		nd Practices of Industria	al Wast	tes Treat	ment.	Addis	son and V	Wesley.	1963.	
,	,	of Industrial Waste Treat			· · ·					

2. Gurnham, C.F., Principles of Industrial Waste Treatment, John Wiley, New York, 1948.

	ril Engineering		Programn		ech. (Civil E	ngineering	•		
		ELECTIV	E SUBJEC							
Course Code	Cou	rse Name		Hot	ırs/W	7eek	Credit	Maxi	mum N	larks
Course Code	Cou			L	Т	Р	С	IA	UE	Total
CE E04		SAFETY PRACTICES CONSTRUCTION		4	0	0	4	25	75	100
Objective (s)	projec 2. To stu	dy and understand the vario ts. dy of construction accidents dy safety procedures to be f	s, safety pro	ogramm	nes, c	ontrac	tual obliga	tions	o constr	ruction
UNIT - I	Accidents a	nd Related Law						To	otal He	ours : 12
ndustry related assessment.	laws. Legal ar	nstruction Safety Manag nd financial aspects of ac		-				nal and	safety	hazar
	Safety Proce									ours 1
		afety Programmes - Job				-	0		-	entives
Contractual Ob	ligations - Sul	ostance Abuse - safety Re	cord Keep	ing Sat	fety (Cultur	e - Safe W	Vorkers	s	
UNIT-III	Safety W	orkers and Managemen	its					Т	otal H	ours 1
	.i	visors - Safety and Mid		pers -	Тор	Man	agement			
Activities and	1	oject Coordination and		_	-		0			1
prevention-cost	-	ccident reporting investig	-					1		
UNIT-IV	Safety Meth	ods						То	tal Hou	urs:12
Total loss cont	rol and dama	ge control-Safety sampli	ng- safety	audit	- Sa	afety (equipmen	it -plar	ning a	and sit
· · · ·	fety system of				n - l	olastin	g- timber	ring-sca	affoldir	(
use of ladders		storing construction ma	iterials-Exc	cavatio			8	0		ng- sat
1 1	Safety Equi	<u> </u>	iterials-Exc	cavatio						ng- sat
use of ladders UNIT–V Safety in hand	tools- Safety i	<u> </u>	d conveyo	rs- Saf	ety i	n the	use of m	T nobile	Total H cranes-	ours:1
use of ladders UNIT–V Safety in hand	tools- Safety i in demolition	pments n Hoisting apparatus and	d conveyo nd beams-	rs- Saf Fire h	ety i azaro	n the ls and	use of m preventi	T nobile ng met	Total H cranes- hods.	ours:12
use of ladders UNIT–V Safety in hand handling- Safety	tools- Safety i in demolition ours :60	pments n Hoisting apparatus and work- Trusses, girders ar	d conveyor nd beams- Total Pra this course	rs- Saf Fire h actical (e the	Fety i azaro Class: stude	n the ls and 0 ents w	use of m preventi vill be al	nobile ng met	Total H cranes- hods. Total H	ours:12 Manua Iours :6
use of ladders UNIT–V Safety in hand handling- Safety Total Contact H	tools- Safety i in demolition ours :60	pments n Hoisting apparatus and work- Trusses, girders ar Total Tutorials : 0 On completion of t	d conveyor nd beams- Total Pra this course	rs- Saf Fire h actical (e the	Fety i azaro Class: stude	n the ls and 0 ents w	use of m preventi vill be al	nobile ng met	Total H cranes- hods. Total H	ours:12 Manua Iours :6
use of ladders UNIT–V Safety in hand thandling- Safety Total Contact H Programme Text Books	tools- Safety i in demolition ours :60 e Outcome	pments n Hoisting apparatus and work- Trusses, girders ar Total Tutorials : 0 On completion of t	d conveyor nd beams- Total Pra this course concepts an	rs- Saf Fire h actical (e the	Fety i azaro Class: stude	n the ls and 0 ents w	use of m preventi vill be al	nobile ng met	Total H cranes- hods. Total H	ours:1 Manua Iours :6
use of ladders UNIT–V Safety in hand handling- Safety Total Contact H Programme Text Books 1. Mishra. R.K	tools- Safety i in demolition ours :60 e Outcome	n Hoisting apparatus and work- Trusses, girders ar Total Tutorials : 0 On completion of t constructions safety c	d conveyor nd beams- Total Pra this course concepts an , 2012.	rs- Saf Fire h actical (e the nd safe	Fety i azaro Class: stude	n the ls and 0 ents w	use of m preventi vill be al	nobile ng met	Total H cranes- hods. Total H	ours:1 Manua Iours :6
use of ladders UNIT–V Safety in hand handling- Safety Total Contact H Programme Text Books 1. Mishra. R.K	tools- Safety i in demolition ours :60 e Outcome ., Construction linze, Constru	pments n Hoisting apparatus and work- Trusses, girders ar Total Tutorials : 0 On completion of t constructions safety c	d conveyor nd beams- Total Pra this course concepts an , 2012.	rs- Saf Fire h actical (e the nd safe	Fety i azaro Class: stude	n the ls and 0 ents w	use of m preventi vill be al	nobile ng met	Total H cranes- hods. Total H	ours:1 Manua Iours :6

Departmen	t : Civil Engineer			B.Tec	h. Civi	l Enginee	ering		
Course		ELECTIVE SUB	£	irs / '	Week	Credit	Max	imum I	Marks
Code		Course Name	L	T	Р	С	IA	UE	Total
CE E05	CONSTRU	CTION METHODS AND EQUIPMENT	4	0	0	4	25	75	100
Objective ((s) for ef 2. To m engine 3. To st	troduce various construction equ fectively utilizing them ake aware of the various techniqu eering structures. udy and understand the latest ruction	ues and	pract	ices on	n construc	ction o	f vario	us civil
UNIT – I	Excavation								urs : 12
wall, sheet <u>1</u> – pumps. U UNIT – II	pile wall, soil nai Inder water conc Sub structu		rater pro	ofing	; metho	ods – Tre	nching To	; - Exca tal Hou	avators urs : 12
wall - RCC UNIT – II	Diaphragm walls					-	То	tal Hoj	urs : 12
Methods an	nd equipments fo	pr: Scaffolding, Form work, Hoist plants, pumping, finishing, - sho					stering	and fle	ooring.
UNIT – IN Methods at	<i>O</i>	for RCC & Cable stayed Bridg	es Bala	nced	cantile	ever met			urs : 12 v Span
	cremental lunchi		cor Duin		eurrein			pull of	opuii
UNIT – V		~~~~					То	tal Hoi	urs : 12
	nd equipments f od, TBMs, Tunn	or construction Flexible and rig el Lining.	id paver	nents	, Tunr	nels in so	oft grou	und- C	ut and
	act Hours : 60		Practic	al Cla	ss :0		То	tal Hou	urs : 60
Programm	e Outcome	To develop an understanding or rise buildings with basement for right equipments.				-			0
Text Book	S	*************							
	0	ring Construction, McGraw Hill .,et al.,Construction Planning, Ec				ods McGr	aw Hil	l Co, 2	.011
Reference	Books								
2. Smith, I	R.C, Andres, C.K	n Equipment and its Planning & Principles and Practice of Heavy nael Chew Yit Lin Construction	y Constr	uctio	n, Pren	ntice Hall,	, 1986	_	

. Cnew, M. Y. L., Michael Chew Yit Lin Construction Technology for Tall Buildings, 3rd Ed Scientific Publishing Co. Pte. Ltd., 2009

Departmen	nt : Civil Engineer		Programm		.Tec	h. Civi	il Enginee	ering		
		ELECTI	IVE SUBJEC	·····				ſ	-	-
Course					Iour		Credit	Max	imum	Marks
Code		Course Name			Wee	•••••••••••••••••••••••••••••••••••••••				
Code				L	Т	Р	С	IA	UE	Total
CE E06		INICAL PROCESSES APPLICATION	S AND	4	0	0	4	25	75	100
Objective	(s) techniq 2. To intr	ovide the students the ues oduces the students the techniques.			C	,	0		1	
UNIT – I								То	tal Hoi	urs : 12
compaction consolidation	n and equipmen on, vibratory rolle	ds – suitability – Mechants, compaction spec ers, Vibro floatation.			-	-		metho	ds: d	ynamic
UNIT – II		nt systems, deep well d								ırs : 12
methods ca UNIT – II Grouting:	ase studies.	ests, dewatering by elect Methods – Types – g Case studies.						То	tal Hoi	urs : 12
UNIT – I	۲ŧŧ							То	tal Hoi	ırs : 12
and field co	ontrol. Stabilizatio	ation, Lime stabilisation n using reinforcement -					thods, pri	inciples	s, appli	cations
UNIT – V	·							То	tal Hoi	urs : 12
	etics: Geotextiles, ations – Case studi	, Geogrids, Geomembr ies.	anes, Geone	ets, G	eon	nats, G	eomeshe	s, prin	ciples	Design
Total Cont	act Hours : 60	Total Tutorials : 0	Total Pra	actical	l Cla	lss : 0		То	tal Hoi	1115 : 6 0
Programm	ne Outcome	Students are expected propose suitable reme	<i>,</i> 1				nd their a	associa	ted pro	blems,
Text Books	S									
1. Purush	othama raj. P. Gr	ound improvement tech	niques, Laxn	ni Put	olica	tions (P) Ltd, Ir	ndia, 20	07	
	,	ering principles of Grou	1 .							
Reference l		anna an								
 Koerne Jones.C 	er, R.M., Construc C.J.F.P., Earth rein	tion & Geotechnical me forcement and soil stru troduction to Soil Reinf	ctures, Butte	r wort	th &	co., Lo	ondon,19	85		

3. Sivakumar babu. G.I., Introduction to Soil Reinforcement & Geosynthetics, Universities Press Ltd., 2013

	it : Civil E	ngineering	2	Programm		ch	. Civi	l Enginee	ring		
			ELECTIVE	SORIEC				C 1'	٦r	•	אר ¹
Course Code			Course Name		Ho W	ur: 'ee		Credit	Max	imum	Marks
Code					L 7	[Р	С	IA	UE	Total
CE E07	F	REMOTI	E SENSING AND GIS		4 ()	0	4	25	75	100
Objective	(s)	of remot	duce the students to the b te sensing. ide an exposure to GIS ar								nents
UNIT – I	ÉMI	R and its	interaction with atmosp	ohere & e	arth n	nat	erial		То	tal Ho	urs : 12
important – Atmosph	to remote leric scatte	sensing – ering, abso	g and its components - Wave theory, Particle the orption – Atmospheric wi er, vegetation and soil.	eory, Stefa	an-Bol	tzn	nan ar	nd Wein''	s Displ	laceme	nt Law
UNIT – I	[Platf	forms and	l sensors						То	tal Ho	urs : 12
of importa sensors. UNIT – I	nt Earth F I I Imag	Resources ge interpi	nous – Passive and Activ and Meteorological satell retation and analysis pes of image interpretati	lites – Air	borne	an	d spa	ce-borne	TIR ar To	nd mic tal Hor	rowave urs : 12
interpretati	on keys -		Image Processing – I								
	ai iiiage e	lassificatio	on – Supervised and unsu		sing –	- 1	mage	enhance			_
UNIT – I	V Geog	graphic ii	on – Supervised and unsur nformation systems	pervised.			_		То	tal Ho	urs : 12
UNIT – I Introduction definition	V Geog on – Maps – basic co	graphic in s – Defin omponent	on – Supervised and unsu	pervised. s – types IS softwa	of ma ares –	p D	projec ata ty	ctions – 1 pe – Spa	To map ai itial an	tal Ho nalysis d non	urs : 12 – GIS -spatial
UNIT – I Introductio definition (attribute) o UNIT – V	V Geog on – Maps – basic co lata – mea Data	graphic in s – Defin omponent asurement a entry, st	on – Supervised and unsur- nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis	pervised. s – types HS softwa gement Sy	of ma ares – vstems	p D (Ľ	projec ata ty BMS)	ctions – 1 pe – Spa).	To map ai itial an To	tal Hon nalysis d non tal Hon	urs : 12 – GIS -spatial urs : 12
UNIT – I Introduction (attribute) o UNIT – V Data mode	V Geog on – Maps – basic co lata – mea Data ls – vector	graphic in s – Defin omponent asurement a entry, st or and raste	on – Supervised and unsur- nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compressio	pervised. s – types IS softwa gement Sy on – data i	of ma ares – vstems nput b	p D (C y c	projec ata ty BMS) ligitiz:	ctions – 1 pe – Spa). ation and	To map an itial an To scanni	tal Hon nalysis d non tal Hon ng – at	urs : 12 – GIS -spatial urs : 12 ttribute
UNIT – I Introductio definition (attribute) o UNIT – V Data mode	V Geog on – Maps – basic co lata – mea Data ls – vector	graphic in s – Defin omponent asurement a entry, st or and raste	on – Supervised and unsur- nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis	pervised. s – types IS softwa gement Sy on – data i	of ma ares – vstems nput b	p D (C y c	projec ata ty BMS) ligitiz:	ctions – 1 pe – Spa). ation and	To map an itial an To scanni	tal Hon nalysis d non tal Hon ng – at	urs : 12 – GIS -spatial urs : 12 ttribute
UNIT – I Introduction (attribute) o UNIT – V Data mode data analys	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr	graphic in s – Defin omponent asurement a entry, st or and raste rated data : 60 1	on – Supervised and unsur- nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0	pervised. s – types JS softwa gement Sy on – data i GIS High Total Prae	of ma ares – vstems nput b away al	p D (C lign	projec ata ty BMS BMS ligitiza nment ss : 0	ctions – 1 pe – Spa). ation and t studies -	To map ai itial an To scanni – Lanc To	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60
UNIT – I Introductic definition (attribute) o UNIT – V Data mode data analys System.	V Geog on – Maps – basic co lata – mea Data ls – vecto is – integr act Hours	graphic in s – Defin omponent asurement a entry, st r and raste r and raste	on – Supervised and unsum nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compressio analysis – Modeling in	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prae iarized wit	of ma ares – vstems nput b way al ctical C h basic	p D (C lign	projec ata ty BMS BMS ligitiza nment ss : 0	ctions – 1 pe – Spa). ation and t studies -	To map ai itial an To scanni – Lanc To	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60
UNIT – I Introductic definition (attribute) o UNIT – V Data mode data analys System. Total Cont	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr act Hours he Outcor	graphic in s – Defin omponent asurement a entry, st r and raste r and raste	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be famili	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prae iarized wit	of ma ares – vstems nput b way al ctical C h basic	p D (C lign	projec ata ty BMS BMS ligitiza nment ss : 0	ctions – 1 pe – Spa). ation and t studies -	To map ai itial an To scanni – Lanc To	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60
UNIT – I Introduction (attribute) of UNIT – V Data mode data analys System. Total Cont Programm Text Bool 1. Kumar	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr act Hours he Outcor s.S., Basics	graphic ins - Definomponentasurementa entry, stor and rasterated data: 60: 601me1aof Remote	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in fotal Tutorials : 0 The students will be familiant ind their applications in C re Sensing &GIS, Lakshm	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prae iarized wit ivil Engin	of ma res – vstems nput b way al ctical C ch basic eering.	P D ([] y C ligr Llas c c	projec ata ty BMS) ligitizz nment ss : 0 oncep	ctions – 1 pe – Spa). ation and t studies - ots of rem	To map an itial an To scanni – Lanc To ote ser	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60
UNIT – I Introductic definition (attribute) o UNIT – V Data mode data analys System. Total Cont Programm Text Bool 1. Kumar 2. Naraya	V Geog on – Maps – basic co lata – mea Is – vector is – integr act Hours he Outcor s.S., Basics na.L.R.A,	graphic ins – Definomponentasurementa entry, stor and rasterated data: 60: 601me1aof Remote	on – Supervised and unsu- nformation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prae iarized wit ivil Engin	of ma res – vstems nput b way al ctical C ch basic eering.	P D ([] y C ligr Llas c c	projec ata ty BMS) ligitizz nment ss : 0 oncep	ctions – 1 pe – Spa). ation and t studies - ots of rem	To map an itial an To scanni – Lanc To ote ser	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60
UNIT – I Introductic definition (attribute) o UNIT – V Data mode data analys System. Total Cont Programm Text Bool 1. Kumar 2. Naraya Reference	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr act Hours he Outcor s., Basics na.L.R.A, Books	graphic ins – Definomponentasurementa entry, stor and rasterated data: 60: 60Imeaof RemoteRemote se	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C re Sensing &GIS, Lakshmensing and its applications	pervised. s – types SIS softwa gement Sy on – data i GIS High Total Prad iarized wit ivil Engin i Publicati s, Univers	of ma res – vstems nput b way al ctical C h basic eering.	p D (C igr Class C D 14 SS	projec ata ty BMS BMS BMS Digitiza nment ss : 0 oncep 4. (India)	ctions – r pe – Spa). ation and t studies - ots of rem	To map ai tial an To scanni – Lanc To ote ser 1.	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon nsing at	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60 nd GIS
UNIT – I Introduction (attribute) of UNIT – V Data mode data analys System. Total Cont Programm Text Bool 1. Kumar 2. Naraya Reference 1. Lillesar	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr act Hours he Outcor s.S., Basics na.L.R.A, Books id, T.M., k	graphic in s – Defin omponent asurement a entry, st or and raster rated data : 60 1 me 1 of Remote Kiefer, R.V	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C the Sensing &GIS, Lakshmensing and its applications W. and J.W.Chipman. (200	pervised. s – types SIS softwa gement Sy on – data i GIS High Total Prad iarized wit ivil Engin i Publicati s, Univers	of ma res – vstems nput b way al ctical C h basic eering.	p D (C igr Class C D 14 SS	projec ata ty BMS BMS BMS Digitiza nment ss : 0 oncep 4. (India)	ctions – r pe – Spa). ation and t studies - ots of rem	To map ai tial an To scanni – Lanc To ote ser 1.	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon nsing at	urs : 12 – GIS -spatial urs : 12 ttribute mation urs : 60 nd GIS
UNIT – I Introductic definition (attribute) o UNIT – V Data mode data analys System. Total Cont Programm Text Book 1. Kumar 2. Naraya Reference 1. Lillesar John W 2. Ghosh	V Geog on – Maps – basic co lata – mea Data ls – vector is – integr act Hours ne Outcor s., Basics na.L.R.A, Books ad, T.M., k Villey and S S.K., Cha	graphic ins – Definomponentasurementa entry, stor and rasterated data: 60: 70	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C the Sensing &GIS, Lakshmensing and its applications W. and J.W.Chipman. (200	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prace iarized wit ivil Engin i Publicati s, Univers 04). Remo	of ma res – vstems nput b way al ctical C h basic eering. cons, 20 ity Pres	P D (C ign Class Class C D 14 S S	projec ata ty BMS BMS ligitiza nment oncep 4. (India g and	ctions – r pe – Spa). ation and c studies - ots of rem)Ltd., 201 Image In	To map an itial an To scanni – Lanc To ote ser 1. terpret	tal Hon nalysis d non tal Hon ng – at l Infor tal Hon tal Hon sing at	urs : 12 – GIS -spatia urs : 12 ttribute mation urs : 60 nd GIS
UNIT – I Introductio definition (attribute) o UNIT – V Data mode data analys System. Total Cont Programm Text Bool 1. Kumar 2. Naraya Reference 1. Lillesar John W 2. Ghosh House, 3. Kali C	VGeogonMapsbasiccolatamea $Data$ lsvectorisintegraditionactHoursactHoursactHoursactBooksis.Basicsid, T.M., kVilley and SS.K., Cha2006.	graphic ins - Definomponentasurementa entry, stor and rasterated data: 60 : 70 : 60 : 70 <td: <math="">70<td: <math="">70<t:< th=""><th>on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C is Sensing &GIS, Lakshmensing and its applications W. and J.W.Chipman. (200 td., 2013.</th><td>pervised. s – types IS softwa gement Sy on – data i GIS High Total Prad iarized wit ivil Engin i Publicati s, Univers 04). Remo</td><td>of ma res – vstems nput b way al ctical C h basic eering. tons, 20 ity Pre- te Sen- al Info</td><td>p D (C y c ligr Class c 014 ss</td><td>projec ata ty BMS) BMS) ligitiza nment ss : 0 oncep 4. (India) g and nation</td><td>ctions – r pe – Spa). ation and studies - ots of rem)Ltd., 201 Image In n System,</td><td>To map an itial an To scanni – Lanc To ote ser 1. terpret Naro</td><td>tal Hon nalysis d non tal Hon ng – an l Infor tal Hon sing an ation.</td><td>urs : 12 – GIS -spatia urs : 12 ttribute matior urs : 60 nd GIS V Edn blishing</td></t:<></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:></td:>	on – Supervised and unsum formation systems itions – Map projections is of GIS – standard G scales – Data Base Mana orage and analysis er data – data compression analysis – Modeling in Cotal Tutorials : 0 The students will be familiand their applications in C is Sensing &GIS, Lakshmensing and its applications W. and J.W.Chipman. (200 td., 2013.	pervised. s – types IS softwa gement Sy on – data i GIS High Total Prad iarized wit ivil Engin i Publicati s, Univers 04). Remo	of ma res – vstems nput b way al ctical C h basic eering. tons, 20 ity Pre- te Sen- al Info	p D (C y c ligr Class c 014 ss	projec ata ty BMS) BMS) ligitiza nment ss : 0 oncep 4. (India) g and nation	ctions – r pe – Spa). ation and studies - ots of rem)Ltd., 201 Image In n System,	To map an itial an To scanni – Lanc To ote ser 1. terpret Naro	tal Hon nalysis d non tal Hon ng – an l Infor tal Hon sing an ation.	urs : 12 – GIS -spatia urs : 12 ttribute matior urs : 60 nd GIS V Edn blishing

Department : C	ivil Engineer		***	B.Tec	h. Civi	il Enginee	ering		
	1	ELECTIVE SU	,,¥			-			
Course Code		Course Name		rs / W		Credit		imum 1	T
		Gouise i vanie	L	Т	Р	С	IA	UE	Tota
CE E08	FINITI	E ELEMENT ANALYSIS	3	1	0	4	25	75	100
Objective (s)		pasic knowledge in modeling of stand the concepts of develop						ods	
UNIT – I	Introducti							'otal He	ours:9
Need for Nur	nerical Tech	nnique – Solutions to Diffe	rential E	quatic	ons —F	inite Dif	fferenc	e Metl	nods –
		Veighted Residual and Potenti		1					
Basic steps.		0	0,						
UNIT – II	I-D eleme	nts					T	'otal Ho	ours:9
Shape functions	s – converge	nce Criteria –Geometric Invar	iance – P	ascal's	Trians	ele – Sha	pe Fun	ctions	for one
1	0	Formulation of Element Mat					L		
		l , Local & Natural – Formati							
load vector.		- , <u></u>	0 0- 0-0						0-0-0-0
UNIT – III	II – D Ele	ments					Т	'otal He	ours : 9
Two dimensior	1	– Plane stress – Plane strain	– 3.6 N	odded	l Trian	gular eler	ments	– Rect	angula
		erendipity elements –Isoparm							
C C	, 0	lations –Gauss Quadrate rule.	00000		onupe		,		
UNIT – IV	·····	II-D Elements					Т	'otal He	ours:9
	1	etric elements Tetrahedral, he	xahedral	eleme	nts –F	Formation			
UNIT – V	Solution T	'echniques					T	'otal Ho	ours:9
		es – static condensation. S	olution	Techn	iques-	Gauss	elimina	ation -	Matrix
		solvers. Requirements of Pre							
Demo of mode		-	ana po	or p=0	000001		Subbu	r pu	enages
Total Contact H	······································		tal Practi	cal Cla	nss : 0		Тс	tal Ho	1 rs : 60
		An ability to generate the				various e			
Programme O	ut come	packages understand the as	•					o useu	
Text Books		Puesages anderstand are as	oomory a						
	5, Finite Elen	nent Analysis in Engineering D	Design, S.O	Chand	Comp	any (p) L	.td.,201	3.	
/		te Element Analysis – Theory a	0.		-	, u,			
Reference Boo					<u> </u>				
	i	to the Finite Element Method,	Tata Mc	Graw	-Hill. 2	2013.			
		D.S.Malkus, Concepts and appl					vsis. Io	hn Wild	ev and
Sons, 2013.		, Seneepte and app					,,,0	11	, u
	ton, Finite F	llement Analysis, Tata Mc Gra	w-Hill. 20)12.					
		ment Analysis New Age Inter			2013				

4. Bhavikatti.S.S., Finite Element Analysis, New Age International (P) Ltd., 2013.

Department : C	ivil Engineerii			B.TE	CH. C	ivil Engin	leering		
	·,	ELECTIVE SUI	·····						
Course Code		Course Name	Hou	ırs / W	Veek	Credit	Max	imum 1	Marks
Course Code		Course maine	L	Т	Р	С	IA	UE	Tota
CE E09	ADVANC	ED RCC STRUCTURAL DESIGN	3	1	0	4	25	75	100
Objective (s)		nd the design of special RCC design of RCC structural eleme				0	g, by u	sing th	e basic
UNIT – I	÷	Vall and Beam-Column Joint	ŧ		iaii sta		Т	'otal Ho) • ع ب الد
	. <u>.</u>	ounterfort Retaining walls, D		f Plair	Conc	rete Wal			
Column Joints.	thever and C	ounteriore Retaining wans, D	csign 0	1 1 1 <i>a</i> 11.		icic wai	15, DC	sign of	Dean
UNIT – II	Design of S	labs and Floors					Т	'otal Ho	ours: G
		of Slabs by Yield Line theor	v and I	Hillerbo	org's S	trip meth			
floors by Appro		5	,		0	1	,	0	
UNIT – III	.,	Beams and Serviceability Rec	uiremo	ents			Т	'otal Ho	ours : 9
Design of Dee	p Beams, Des	sign of beams curved in Plan,	Deflec	tion o	f RCC	beams,	Estima	tion of	Cracl
width in RCC E		ibution moments in RCC beam	ıs						
UNIT – IV	Design of S	torage Structures for dry and	l liquid	mate	rials		Т	'otal Ho	ours : 9
Design of Bunk	ers and Silos,	Design of Overhead Circular a	nd Rec	tangula	ır Wate	er Tanks	(withou	it stagii	ng)
UNIT – V	Design of resistance	Formwork, Composite b	eam a	nd B	eam	with fir	e T	'otal Ho	ours : 9
Introduction to	Formwork, I	Design of Formwork for wall,	column	, beam	n and s	lab eleme	ents, Ir	ntroduc	tion to
Composite Con	struction, Des	sign of Steel-Concrete Compos	ite bear	ns, De	sign of	beams w	vith cas	t in situ	ı slab.
Total Contact H	Iours : 45	Total Tutorials : 15 Tota	ıl Practi	ical Cla	ss : 0		То	tal Hou	urs : 6(
Programme O	ut come	Student should able to d construction.	esign i	ndustr	ial str	ructures	and fo	ormwo	rk fo
Text Books									
1. Varghes	se,P.C., Advan	ced Reinforced Concrete Desig	gn, Prer	ntice-ha	all of I	ndia (p) I	Ltd., 20)12.	
2. K. N.Jh	a, "Formwork	for Concrete Structures" Mc	Graw H	ill Edu	ication	Pvt Ltd,	New I	Delhi 20	012
Reference Boo	oks								
	L and Karve S ers, 2013.	S.R, Limit State Theory & Desi	gn of R	einford	ed Co	ncrete-IS	456 20)00,Sta1	ndard
	· ·	ed Concrete Design, Tata Mc G	fraw-Hi	ill, 2014	4.				
		site Structures of steel and con				blishing,	2011.		
~	· · ·	Devdas Menon Reinforced Co				0.		013	

4. Unnikrishna Pillai.S, Devdas Menon, Reinforced Concrete Design, Tata Mc Graw-hill, 2013

Department	: C	ivil Engine			B.Te	ch. Civi	il Enginee	ring		
			ELECTIVE SU	€		1	- ··		•	
Course			Course Name	Hour	····•	t	Credit			Marks
Code				L	Т	Р	С	IA	UE	Total
CE E10	S	А	ESTIGATION METHODS ND PRACTICES	4	0	0	4	25	75	100
			roduce the various stages of site							
Objective (s)		miliarize the students to various retation of data and final recomm	1						igation,
UNIT – I								То	tal Ho	urs : 12
Objectives o	of si	te investiga	tion - various stages in site invest	igation p	oroce	ss. Plar	ining and I	Desk S	tudy -	
		0	hotographs - interpretation of ae	<u> </u>			0		-	gation,
Geological n	nap	s, minerals	and mining records, soil planning	g maps,	site	reconna	aissance ar	nd loca	l enqu	iries.
UNIT – II								То	tal Ho	urs : 12
Geological r	net	nods - diff	erent stages, Geological explorat	tion met	hods	–Area	l mapping	; , site	mappi	ing and
construction	m	apping-Roo	ek mass characterization- Discor	ntinuities	s in 1	ocks ,	Rock core	e descr	iptors	, Rock
mass classifie	cati	on, RQD,	Rock mass rating, Rock structure	e rating,	Q-s	ystem-	General p	orincip	le distr	ibution
			face - Electrical resistivity, Seism				-	-		
			data, Interpretation and limitat	tions. In	dex	and M	echanical	proper	ties of	f rocks,
Laboratory a		insitu tests								
UNIT – III										urs : 12
· · · ·			auguring, and different types of	0						
. 00 0		1 `	Ibsurface geophysical exploration) - Need	for	logging	technique	es, clas	sification	on and
different typ	es l	ogging met	hods.						1	
UNIT – IV	•									urs : 12
-			samples, sampling procedure, sam	-			-			0
1 0	-		hole, Insitu tests, SPT, SCPT, Pre	essure m	eter 1	tests, in	terpretatio	on and	l applic	cation,
Index prope	rtie	s, Laborato	bry testing.					ተ	, 1 T T	10
UNIT - V		·.·		с .1		1	1.1			urs : 12
	-	0.	eport format, recommendations					-		
Total Contae			check report site preparation, inv Total Tutorials : 0 Tota	l Practic			nstruction		•	on. ours : 60
	ιг	10015.00	Student is expected to have al				introction			
Programme	<u>, </u>	itcome	various stages, interpret the f							
riogramme		utcome	different types of construction		i anu	allive		comm	lenuau	0115 101
Text Books			different types of construction	I WOIKS.						
		'Site Inves	tigation Practice;, ESFN. SPON	Dublishe	r e 10	187				
Reference I					13, 12	02.				
			cal Engineering Analysis and Eva	luation	McG	row H	ill Book C	omnar	w 198	6
			Geology, Elsevier India Pvt.Ltd.		IVICC	JIAW 11	III DOUK C	ompai	iy, 170	0.
		0 0	itas, M.H.D.E., Geology for Eng		Usevi	er Indi	htt (P) Ltd	2006		
			and book of Geology in Civil En	,					983	
				00	_,		00110			

Department : Civil En	nginee		rogram		B.Te	ech. (ivil E	ngine	eering		
		ELECTIVE	SORIE								
Course				I	Iou	rs /	Ct	edit	Max	imum l	Marks
Code		Course Name			We	ek					
				L	Т	Р		С	IA	UE	Total
		TAL ENGINEERING		4	0	0		4	25	75	100
Objective (s) 2. 3. 4.	enviror deterio To kno To stud To lear	able students apply these endents such as shoreline ration and coastal habitat enderty with the basics and features of dy classification, characteristic in about coastal processes a	erosion vanesce of coasta stics, and	n, na nce. Il wat Il the	atur: ters ories	al flo and c s of w	oodinş oastal vaves,	g haz ecos	zards, ystems and cu	water urrents.	quality
	istal zo										urs : 12
		- Factors influencing coas									
· · · ·		nptions and derivations of	relation	nship	os —	Press	ure v	vithin	progre	essive v	wave –
Wave energy - Proble											
		nsformation									urs : 12
		g – Refraction – Reflectio						g of [,]	waves	– Near	shore
······		- Wave Hindcasting – fore	casting	- Sea	leve	el cha	nges.				
		es on Structures									urs : 12
	aking,	breaking and broken waves	s on ver	tical,	slop	oing, o	curve	d, stej	pped b	arriers	and on
piles – Problems.											
		Movement									urs : 12
		rosion process – Near sho									
		ach process - Environment									
		effects of dredging - Remot	e sensin	g and	d GI	S app	olicati	on in		<u>.</u>	<u>.</u>
		rotection	11	D 1	1 1	1 +					urs : 12
		es - Design concepts – Sea			khea	d - f	Revet	nent	– Groi	ns – A	rtificial
	······	- Maintenance of coastal s			1.0	1				1 7 7	
Total Contact Hours			Total Pr				i				urs : 60
Programme Outcon		 To provide an overvie field of coastal enginee To introduce the proc coastal and shelf way beach nourishment etc 	ring. cesses of	f inc	ludii	ng c o	astal	and e	estuarin	ne circu	ulation,
Text Books	l										
	Manua	ıl (Vol – I, II, III) U.S. Arm	v Crops	s of I	Enge	g. USA	4.				
		ngineering (Indian Scenario	· 1			, ,		larasi	mhan &	& S. ka	ıthiroli,
Reference Books											
1. Ippen, A.T., Estu		nd coastline Hydrodynamic									
		phical Engineering., Prentic ble, R.A. Water Mechanics							Jercy		

1	il Engineerin	ng Prog	ramme	:B.Teo	ch. Civ	il Enginee	ring		
		ELECTIVE S	UBJEC	СТ					
0 0 1			Hou	ırs / W	7eek	Credit	Max	imum N	Marks
Course Code		Course Name	L	Т	Р	С	IA	UE	Total
CE E12		ENGINEERING AND	3	1	0	4	25	75	100
Objective (s)		re expected to learn the i e traffic engineering & mana			f traff	ic enginee	ering ar	nd relat	ionship
UNIT – I	INTROD	UCTION					,	Total H	ours:9
0	1 /	aracteristics of vehicles nents of Traffic Engineering							braking
UNIT – II	Traffic Sur	veys and analysis					,	Total H	ours:9
Studies, Accident	Studies and	ne, Capacity, Speed and D Safety level of Services- Bas					n, Parki	ing, Peo	destrian
UNIT – III	Traffic Con	ntrol					*	Total H	ours:9
Traffic Signs, Roa	ad Markings,	, Design of Traffic Signals a	and Sig	nal Co	ordin	ation(Prob	lems), '	Traffic (Control
Aids and Street F	urniture, Stre	eet Lighting, Computer appl	ications	s in sig	nal des	sign			
UNIT – IV		Design of Intersections					,	Total H	ours:9
C (1' , T	anationa Cla	$C \sim C \sim 1$	-				-	·	• 1 ~
Conflicts at Inter	sections, Cla	ssification of 'At Grade In	tersecti	ons,- (Channe	elized Inte	rsection	is-Princ	iples of
		ts of Intersection design, F							
	ign, Element								
Intersection Desi	ign, Element	ts of Intersection design, F					ion and		hanges-
Intersection Desi Design principles UNIT – V	ign, Element Traffic Ma	ts of Intersection design, F	Rotary 1	Design	, Grac	le Separat	ion and	l interc Total H	hanges- ours : 9
Intersection Desi Design principles UNIT – V Traffic Managem	ign, Element Traffic Ma lent- Transp	ts of Intersection design, F nagement	Rotary I	Design M) – '	, Grac Travel	le Separat Demand	ion and , Manag	l intercl Total H ement (hanges- ours : 9 (TDM),
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastir	ign, Element Traffic Ma lent- Transp ng Techniquo	ts of Intersection design, F nagement ortation System Manageme	Rotary ent (TS 5 Mover	Design M) – ' ments,	, Grac Travel One V	le Separat Demand Way Street	ion and , Manag s, Traff	l intercl Total H ement (fic Segre	hanges- ours : 9 (TDM), egation,
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastir	ign, Element Traffic Ma lent- Transp ng Techniquo	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning	Rotary ent (TS 5 Mover	Design M) – ' ments,	, Grac Travel One V	le Separat Demand Way Street	ion and , Manag s, Traff	l intercl Total H ement (fic Segre	hanges- ours : 9 (TDM), egation,
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming,	ign, Element Traffic Ma hent- Transp ng Techniquo Tidal Flow	ts of Intersection design, F magement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus	Rotary ent (TS 5 Mover	Design M) – ' ments, , Intro	, Grad Travel One V ductio	le Separat Demand Way Street n To Inte	ion and Manag s, Traff lligent	l intercl Total H ement (fic Segre	hanges- ours : 9 (TDM), egation, ortation
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS)	ign, Element Traffic Ma hent- Transp ng Techniquo Tidal Flow	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To	Rotary ent (TS g Mover Lanes, tal Prac	Design M) – ' ments, , Intro :tical C	, Grac Travel One V ductio lass : 0	le Separat Demand Way Street n To Inte	ion and Manag s, Traff Illigent	l intercl Total H ement (fic Segre Transpo otal Ho	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 Total 1. Student should have le	Rotary I ent (TS 5 Mover Lanes, tal Prac earnt ba	Design M) – ' ments, , Intro :tical C .sic teri	, Grac Travel One V ductio lass : 0 ninolo	le Separat Demand Way Street n To Inte	ion and Manag s, Traff Illigent T ic engin	l intercl Total H ement (Gic Segre Transpo otal Ho meering .	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS)	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45	ts of Intersection design, F magement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have le	Rotary I ent (TS 5 Mover Lanes, tal Prac earnt ba	Design M) – ' ments, , Intro :tical C .sic teri	, Grac Travel One V ductio lass : 0 ninolo	le Separat Demand Way Street n To Inte	ion and Manag s, Traff Illigent T ic engin	l intercl Total H ement (Gic Segre Transpo otal Ho meering .	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have le 2. He should have learnt	Rotary I ent (TS g Mover Lanes tal Prac earnt ba the im	Design M) – ' ments, , Intro :tical C sic terr portan	, Grad Travel One V ductio lass : 0 ninolo ice of	le Separat Demand Way Street n To Inte gy of traff carrying ou	Manag Manag s, Traff Illigent T ic engir ut traffi	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have learnt interpretation.	Rotary I ent (TS g Mover Lanes tal Prac earnt ba the im	Design M) – ' ments, , Intro :tical C sic terr portan	, Grad Travel One V ductio lass : 0 ninolo ice of	le Separat Demand Way Street n To Inte gy of traff carrying ou	Manag Manag s, Traff Illigent T ic engir ut traffi	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho Programme Out Text Books	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow burs : 45 t come	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have learnt interpretation.	Rotary I ent (TS g Mover Lanes, tal Prac earnt ba the im importa	Design M) – ' ments, , Intro tical C sic tern portan ance of	, Grac Travel One V ductio lass : 0 ninolo ice of E Mana	le Separat Demand Way Street n To Inte gy of traff carrying ou gement co	Manag s, Traff lligent T ic engin at traffi	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho Programme Out Text Books 1. Kadiyali I	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45 t come	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have le 2. He should have learnt interpretation. 3. Should appreciate the	Rotary I ent (TS g Mover Lanes tal Prac earnt ba the im importa plannn	Design M) – ' ments, , Intro sic tern portan ance of ng, Kh	, Grac Travel One V ductio lass : 0 minolo ice of Mana anna p	le Separat Demand Way Street n To Inte gy of traff carrying ou gement co publication	Manag s, Traff lligent T ic engin ut traffi oncepts. s, 2014	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho Programme Out Text Books 1. Kadiyali I 2. Khanna k	ign, Element Traffic Ma tent- Transp ng Technique Tidal Flow ours : 45 t come	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have learnt interpretation. 3. Should appreciate the Engineering and Transport	Rotary I ent (TS g Mover Lanes tal Prac earnt ba the im importa plannn	Design M) – ' ments, , Intro sic tern portan ance of ng, Kh	, Grac Travel One V ductio lass : 0 minolo ice of Mana anna p	le Separat Demand Way Street n To Inte gy of traff carrying ou gement co publication	Manag s, Traff lligent T ic engin ut traffi oncepts. s, 2014	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM), egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho Programme Out Text Books 1. Kadiyali I 2. Khanna K Reference Book	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45 t come	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have le 2. He should have learnt interpretation. 3. Should appreciate the Engineering and Transport CEG, Highway Engineering,	Rotary I ent (TS 5 Mover Lanes, tal Prac earnt ba the im importa plannn Khann	Design M) – ' ments, , Intro tical C sic tern ance of ance of ng, Kh na publ	, Grac Travel One V ductio lass : 0 ninolo ice of E Mana ishers,	le Separat Demand Way Street n To Inte gy of traff carrying ou gement co publication Roorkee,	Manag s, Traff lligent T ic engin ut traffi encepts. s, 2014 2014	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM) egation, ortation urs : 60
Intersection Desi Design principles UNIT – V Traffic Managem Traffic Forecastin Traffic Calming, System(ITS) Total Contact Ho Programme Out Text Books 1. Kadiyali I 2. Khanna k Reference Book 1. IRC Specifi	ign, Element Traffic Ma lent- Transp ng Technique Tidal Flow ours : 45 t come 2. R., Traffic X and Justo (s fications: guid	ts of Intersection design, F nagement ortation System Manageme es, Restrictions On Turning Operations, Exclusive Bus Total Tutorials : 15 To 1. Student should have learnt interpretation. 3. Should appreciate the Engineering and Transport	Rotary I ent (TS g Mover Lanes, tal Prac earnt ba the im importa plannn Khann ons on	Design M) – ' ments, Intro sic tern portan ance of ng, Kh na publ Traffic	, Grac Travel One V ductio lass : 0 ninolo ce of Mana anna p ishers, : plann	le Separat Demand Way Street n To Inte gy of traff carrying ou gement co publication Roorkee, ing and M	Manag s, Traff lligent T ic engin ut traffi oncepts. s, 2014 2014 anagem	l intercl Total H ement (fic Segre Transpo otal Ho neering . c survey	hanges- ours : 9 (TDM) egation, ortation urs : 60 ys & its

Department : 0	Civil Engineering Programme : B. Tech. Civil Engineering									
		ELECTIV	E SUBJI	ECT						
Course		Course Name		Hours	· · · · · · · · · · · · · · · · · · ·	7eek	Credit	Max	imum	Marks
Code				L	Т	Р	С	IA	UE	Total
CE E13		IWAY AND AIRPORT VEMENT DESIGN	ſ	3	1	0	4	25	75	100
Objective (s)		are expected to understand understand the analysis								
UNIT – I	Pavement t	ypes						Т	otal He	ours:9
between flexit repetition of lo	ole and rigid oads – elastic n	nents – theoretical subg pavements – design fac nodulii – climatic variatio	ctors – v					ingle	wheel	load –
UNIT – II	Flexible Pa									ours:9
		s: group index method – heory, FEM method	CBR me	ethod – I	RC	- 37 :	recommen	ndatio	ns – M	le Load
UNIT – III	Rigid Paver	ments						Т	otal He	ours:9
		radius of relative stiff pefficients – design chart			oad	posi	tions – V	Wester	gaard's	s stress
UNIT – VI	Concrete Pa	avements						Т	otal He	ours:9
combination o	f stresses. ts in concrete j	crete pavements: Westerg pavements: expansion joi	-	-			- -			
UNIT – V	Condition A	Assessment						Т	otal He	ours:9
		dition: pavement instrum tal influence and effects-							oughn	ess and
Total Contact	Hours : 45	Total Tutorials : 15	Total	Practica	l Cla	ss : 0		То	tal Ho	urs : 60
Programme C	Outcome	By the end of the cour between the flexible and				ıld ha	ve unders	tood	the dif	ference
Text Books		L								
		Highway Engineering, No practice and design of hig						New 1	Delhi, 2	2013.
Reference Bo	oks									
2. IRC-58 Te	ntative guideli	lines for the design of F nes for the design of rigi	id pavem	nents 201	12		t-1 2012			

3. Yoder. E.J, Witczak.M.W., Principles of Pavement design, Wiley India (P) Ltd., 2012.

Department : (Civil Engineering	·	<u>.</u>		3.Tech.	Civil Eng	gineering	5	
		ELECTIVE S	SUBJE	CT		-	-		
Course code	C	Course Name	He	ours/	Week	Credit	Max	imum	Marks
Course coue	C C	Jourse Manne	L	Т	Р	С	IA	UE	Total
CE E14		ED STRUCTURAL ANALYSIS	3	1	0	4	25	75	100
Objectives	1. To cover	r the advanced methods of	f analys	is of	pin joi	nted and r	igid joir	nted str	uctures.
	2. To intro	duce the students the imp	ortance	of c	ompute	er aided co	omputin	g tools.	
UNIT -I	Introduction to	stiffness and flexibility	metho	ds				Total	Hours : 9
Stiffness and f	lexibility charact	eristics of structures- stif	fness a	nd fle	exibility	matrices	- proper	rties of	stiffness
matrix- stiffnes	ss and flexibility	matrix relationship. Transf	formati	on m	atrices.				
UNIT -II	Analysis of co	ontinuous beams						Total	Hours : 9
		s with two or three unkr	nowns	by st	iffness	and flexi	ibility m	nethod-	support
settlement- con	mparison of met	hods		-			-		
UNIT -III	Analysis of rig	gid jointed frames						Total	Hours : 9
Analysis of rigi	id jointed plane	frames with two or three u	unknov	ns b	y stiffn	ess and fle	exibility	metho	1-
support settlen	nent- choice of n	nethods			-		-		
UNIT -IV	Analysis of pi	n jointed frames						Total	Hours : 9
Analysis of pin	i jointed plane fr	ames with two or three un	known	s by s	stiffnes	s and flex	ibility m	ethod-	lack of
fit and tempera	ature stress- com	parison of methods					-		
UNIT -V	Introduction	to finite element method	1					Total	Hours : 9
Bandwidth of	stiffness matrix-	static condensation - int	roducti	on to	o comp	uted aided	d structi	ıral ana	lysis and
finite element					1				
Total Contact	Hours: 45	Total Tutorials : 15 T	otal Pr	actica	l Classe	es: 0	,	Total H	lours : 60
Das sure as a	O +	Student will able to apply	matrix	metl	nod of	analysis fo	or indete	erminat	e
Programm	ne Outcome	structures and will unders	stand th	ne neo	ed for t	he compu	iter aide	d analy	sis.
Text Books		•							
1. Natarajan,	C and Revathi, J	P, "Matrix methods of stru	ıctural	analy	sis-The	eory and p	oroblem	s", PH	learning
Pvt Ltd. N	ew Delhi 2014.					, ,			0
2. Pandit, G.	S and Gupta S.	P, "Structural Analysis- A	a matri	x app	oroach'	', Tata M	cGraw	Hill Pu	ıblishing,
New Delh	i 2014.								
Reference Bo	oks								
1. Wang. C. F	K., Intermediate	Structural Analysis, Tata N	Ic Grav	w Hil	l, 2013				
2. Russell C I	Hibbeler, Structu	ral Analysis, Pearson Educ	cation I		2013				
3. Khurmi. R	.S., Theory of St	ructures, S.Chand & Com	pany, 2	012.					
4. Devdas Me	enon, Advanced	Structural Analysis, Naros	a Publi	shing	g House	e, 2012.			

Department : C	ivil Engineeri	<u> </u>		.Tec	h. Civi	l Enginee	ring		
		ELECTIVE SUB		/ 1	v7 1	C 1'	٦ ٢	• -	λ. Γ . 1
Course Code		Course Name	Hour	····,	*	Credit		imum I	
			L	Т	Р	С	IA	UE	Total
CE E15	GROUN	DWATER HYDROLOGY	4	0	0	4	25	75	100
Objective (s)	transmi flow. 2. Introdu 3. To fam	e the basic understanding about ssion of groundwater and the fu- ace various methods to carry out iliarize the concepts of well des water exploration and recharge to	ndamen pumping ign, con	tal pr g test struc	rinciple is to as	es governi sess aquif	ing the Fer char	groun acteris	dwater tics.
UNIT – I		ntals of groundwater					Tot	tal Hoi	urs : 12
		ground water development, a	dvantage	es o	f Gro	undwate			
yield , specific measurement o General differen aquifers- Flow r UNIT – II Steady flow to a a well in a confr of images - Ana UNIT – III Types of wells - and sanitary pro UNIT – IV	retention, f permeabilit ntial equation nets. Well Hydra well in a con ned aquifer, a lysis of pump Water wells well design - tection of we Groundwate	fined aquifer, unconfined aquifer in unconfined and a leaky confine test data for the above aquifers construction - well development	lity and mental for stead r and a le ed aquife - Proble : - Testir	tran Equa ly ar eaky er I ms.	smissi ution c ud uns confin Partially wells f	bility - L of continu teady flow ed aquifer y penetrat	aborate iity - 1 ws - A Tot r - Uns ing we Tot - well c Tot	ory an Darcy's pplicat tal Hou teady f lls - Ma tal Hou tal Hou tal Hou	d field s law - tion of urs : 12 low to ethod urs : 12 tion urs : 12
(well logging m					0		1		
UNIT – V	Groundwate	er quality and salt water intrus	ions				Tot	tal Hou	ırs : 12
		gical quality of groundwater- sali		of gr	oundw	vater, qua	lity crit	eria fo	r
		- saltwater intrusion – prevention				ficial Recl			
Total Contact H	Iours : 60		Practica						urs : 60
Programme O	utcome	The student should be able to a find out the aquifer characteris student should be able to construction, development and	stics, rec carry	harg out	e and groun	barrier bo dwater e	oundar	ies. Al	so, the
Text Books		,		`					
	ld . D.K., Gro	oundwater Hydrology, John wile	y and So	ns, 2	014.				
	· · · · ·	,Ground water, New Age Intern		,		4.			
Reference Boo									
2. Walt 3. Abd	ton W.C., Gro el, Aziz Isma	hang.H., Fundamentals of Groun oundwater Resources Evaluation il Kashef, Groundwater Enginee undwater assessment, developme	, McGra ring, Mc	w H Grav	ill Boo v Hill I	k Co., 201 Book Co.,	12. , 2012.		

Departmen	t : Civil Engin				3.Tec	h. Civi	l Enginee	ering		
		ELECTIV	VE SUBJ	ECT						
Course		Course Name		Hou	rs / V	Veek	Credit	Max	imum	Marks
Code				L	Т	Р	С	IA	UE	Total
CEE16	MAC	HINE FOUNDATIONS		3	1	0	4	25	75	100
Objective	(s) 2. Intr	provide the student the basic oduce the students the co amic loads. introduce the techniques to a	ncept of	f analys	is an	d desig			,	
UNIT – I		of vibration								ours:9
		dynamic loads free vibration	ons of s	spring r	nass	system	ns. forced			
		bration measuring equipmen		r8						
UNIT – II		c soil properties and behav						Т	otal Ho	ours:9
Dynamic p	£	soils: Elastic properties of		oefficiei	nt of	elastic	c uniforr	n and	non-u	niform
· 1	1	effect of vibration on the d								
properties c	of soils , Coda	l provisions.	1	1 1						,
UNIT – II	I Foundat	ions Of Reciprocating Ma	achines					Т	otal Ho	ours:9
Types of N	fachines and	Foundations – General req	uiremen	ts – Mo	odes (of vibr	ation of	a rigid	foun	dation,
block meth	od of analysis	s – Linear Elastic weightless	spring 1	nethod	– Ela	astic h	alf – spac	e metl	hod – .	Analog
models; De	esign of Blo <mark>c</mark> k	foundation Codal Recom	ımendati	ons.						
UNIT – IV	/ Foundat	ion For Impact And Rota	ry Mach	ines				Т	otal Ho	ours:9
		act type machines – Design								
0		endation. Special considera					0			
		ethod of analysis – Desi	ign; Dyı	namic	soil ·	– stru	icture –	Intera	iction,	Codal
Recommen										
UNIT – V	i	n Control								ours:9
		sive and active isolation,	use of	springs	and	l sprin	ngs and	dampi	ng ma	iterials,
	·····	nachine foundations.		- •	1		T	E C		
Total Conta	act Hours : 45		<u>k</u>	Practica						urs : 60
Programm	e Outcome	To understand the basi	-		-		behaviour	of soi	ls – eff	ects of
<u> </u>		dynamic forces and the	various	design n	nethc	ods.				
Text Book			C3 6 1 1			H	16.0	T T'11	0010	
	,	Vaidyanathan, Handbook O				,	ta McGra	w-Hill,	, 2012.	
	,	tions for Industrial Machines			· ·		1 · •		1. 004	2
		.V., Dynamics soil tests and	applicati	ons, Wł	neeler	Publis	sning , N	ew Del	ini, 201	۷.
Reference			•	C	т	• •	144			
2. Shamsh	ar Prakash , V	Ramana Principles of Soil Dy /ijaykumar Puri, Foundation						ohn W	iley &	Sons
(P) Ltd,		· (1 · (C 1 · · · ·	101140	74						
3. Barkon,	,D.D., Dynam	nics of basis of foundation, N	лGH,191	/4.						

Barkon,D.D., Dynamics of basis of foundation, MGH,1974.
 Swami Saran, Soil Dynamics and Machine Foundation, Galgotia publications Pvt. Ltd., 2012.

Department :	Department : Civil Engineering Programme : B.Tech. Civil Engineering										
		ELECTIV	E SUBJE	ECT							
C C 1		C N		Hou	rs / V	Week	Credit	Max	imum	Marks	
Course Code		Course Name		L	T	Р	С	IA	UE	Total	
CE E17	EARTH F	RETAINING STRUCT	URES	3	1	0	4	25	75	100	
Objective	1. To famili	arize the concept of earth	n pressure	, desigi	n of e	arth re	etaining s	tructur	es.		
Objective	2. To introd	luce the students the esse	ntial steps	s involv	ved in	desig	n of temp	oorary	ERS		
(s)	3. To introd	luce the techniques invol-	ved in cor	nstructi	on te	mpora	ry ERS.				
UNIT – I	Earth Press	sures						Т	otal H	ours:9	
Introduction,	development (of earth pressure theory,	classical	solutic	ons, g	raphic	al techni	ques, a	ictive,	passive	
cases, earth pr	essure due to	external loads, Empirical	approach	nes, arc	hing	of soil	, stress d	istribu	tion in	shafts,	
	s, buried cond				_						
UNIT – II	Retaining W	Walls						Т	otal H	ours:9	
Gravity and ca	antilever Retai	ning walls, stability of ret	aining wa	lls and	chec	k for s	stability, I	Earth c	quake f	forces -	
Mechanically	stabilised retain	ning walls – General des	sign meth	ods –	stabil	ity – v	valls with	n geote	extile a	ind geo	
grid.		C	0			•		0		0	
UNIT – III	Sheet Pile V	Walls						Т	otal H	ours:9	
Types of she	et pile walls,	analysis and design of	cantilever	and a	incho	red sl	neet pile	walls,	const	ruction	
methods.	-						-				
UNIT – IV	Coffer dame	S						Т	otal H	ours:9	
Types and us	es of coffer d	ams- analysis, design an	d stability	of br	raced	coffer	dams –	analysi	s, desi	gn and	
stability of cell	lular cofferdar	ns - trenches - soil anche	or - Desig	n and c	constr	uction	ı.				
UNIT – V	Diaphragm	Wall						Т	otal H	ours : 9	
: Analysis, des	ign, Equipmer	nt and Construction met	hod of D	iaphrag	gm wa	all – S	lurry wal	ls - pil	e wall,	soldier	
pile and laggin	g walls, soil na	iling wall- Design and co	nstruction	1.							
Total Contact	Hours: 45	Total Tutorials : 15	Total I	ractica	l Clas	s:0		То	tal Ho	urs : 60	
Programme	Outcome	At the end of this cou									
Tiogrammik		flexible earth retaining s	tructures,	slurry	supp	orted t	renches	and de	ep cuts	3	
Text Books											
,	1	of Foundation Engineerin	0, 0,	0	0,						
2. Robert M	. Koerner Des	signing with Geosyntheti	cs 6 th Edi	tion, V	70lum	ne 1 an	nd Volun	ne 2, 2	Xlibris,	Corp.,	
2012											
Reference Bo											
1. Hajnal, I., 1984.	Marton, J. and	l Regele, Z., Construction	n of diaph	ragm v	valls,	A Wile	ey – Inter	rscienc	e Publ	ication,	
	. and Woods.	R., Earth and Earth retain	ning struc	tures. I	Routle	edge, 1	992.				
		y, J. and Woods, R.I., E	0			0		struc	tures.	Second	
	urvey Universi						0				
		-,,									

Department : C				B.Teo	ch. Civ	il Enginee	ering		
	ELECTIVE	······		rs / W	leek	Credit	Max	imum 1	Marks
Course Code	Course Name	I		T	P	Cicuit	IA	UE	Total
CE E18	UNDER GROUND STRUCTUR	ES 4	1	0	0	4	25	75	100
Objective (s)	 To introduce the students the construction of the various constructures. 	1		0		0			ground
UNIT – I	Tunnel Planning						To	otal Ho	urs : 12
	s - elements - Layout – Survey and A	lignmen	t —	Geote	chnica	il Investig	ation -	- Deep	Shafts
<u>_</u>	– Methods– Lining					Ĩ			
UNIT – II	Tunnel Construction Methods		4			<u> </u>			urs : 12
	unneling- Methods – TBMs - monitori					Lining. 'I	unneli	ng in L	Difficult
	l Boring Machines – Material Handling	and con	stru	ction [olant.	1		-	
UNIT – III	Safety Provisions	-			-				urs : 12
	- Tunnel Ventilation – tunnel Lighting –	- Drainag	ge in	n tunn	els – T	unnel Rel			
UNIT – IV	Underground structures:								urs : 12
	Planning– planning for underground pa	ırking –	civi	c facil	ities –	Liquid st	orage	facilitie	s. –
	ethods: cut and cover methods								
UNIT – V	Buried Structures								urs : 12
	ed pipelines – Box jacking - Trenchles	s Techn	olog	gy: con	nstruct	tion Meth	ods an	d Macl	nines –
Repair and reha	bilitation of buried pipelines -								
Total Contact H		Total Pr							urs : 60
Programme O	ut come To understand the basics	s of desig	gn ai	nd cor	nstruct	ion of un	dergrou	ınd strı	ictures.
Text Books									
1. Tunnel Eng	gineering Handbook 0002 Edition (Pap	erback)	Au	thors:	Thom	nas R. Ku	esel, E	lwyn H	. King,
John O. Bic	kel.CBS Publishers, New Delhi.								
2. Trenchless	Technology: Pipeline and Utility Des	sign, Co	nstr	uction	, and	Renewal:	Pipeli	ne and	Utility
	nstruction, and Renewal. Mohammad N	ajafi - M	cGr	aw Hi	ll Prof	fessional			
Reference Boo									
Alfred S 2. Practica 3. Technic	ction to Tunnel Construction. David N Stark, David N. Chapman, Nicole Metje. I Tunnel Construction, Gray B. Hemph cal Manual for Design and Construc- tion of State Highway and transportar 57-2	Applied ill, John tion of	l Ge Wile Ro	eotchn ey & S oad Ti	ique V ons.2(unnels	701-3. Tay 013. civil El	lor and ements	Franci – Ar	s. nerican
4. Undergr	round Infrastructures: Planning, Design an Zhao. Butterworth – Heinemann-Els					,	Bhawan	i Singh	, R. K.

Department : C	ivil Engineeri		gramme :	B.Tec	h. Civi	il Enginee	ering		
		ELECTIVE S	······						
Course Code		Course Name	Hou	ırs / W	*	Credit	Max	imum l	Marks
Course Code			L	Т	Р	С	IA	UE	Total
CE E19	AIR AN1	O NOISE POLLUTION	4	0	0	4	25	75	100
Objective (s)	2.To underst 3.To study a	basic knowledge on the air p tand the interaction of air po bout the control measures of	llutants of	n the n	neteoro	ological p		ers	
UNIT – I	Introductio	n					То	otal Ho	urs : 12
Definition of cl	ean air –air p	ollutants - Sources and clas	sification	- Effe	cts of	air pollut	ion on	man,	animal,
vegetation and p	properties -Ar	nbient Air Quality Standards	, Air pollu	ition co	ontrol	legislation	1.		
UNIT – II	Meteorolog	y and Air pollution					То	tal Ho	urs : 12
Meteorology an	d Air polluti	on – Atmospheric stability	– Inversio	ons –	Mixing	g height -	-Plume	e behav	viour –
Plume rise estin	nation – Efflu	ent dispersion theories -Air	pollutants	Mode	lling.				
UNIT – III	Control of p	particulate pollutants					То	otal Ho	urs : 12
Control of Air p	ollutants: par	ticulates – Filters – Gravitati	onal settli	ng cha	mbers	– Centrif	ugal-m	ultiple	type
cyclones – Colle	ection efficien	cy - Electrostatic precipitato:	s – Wet c	collecto	ors-Cer	ntrifugal s	pray so	rubber	S -
Venturi scrubbe	ers.								
UNIT – IV	Control of g	gaseous pollutants					То	otal Ho	urs : 12
		Absorption - Principles – De							
adsorbents – E	quipment des	criptions – Condensation – O	Contact co	ondens	ers, Ir	ncineratio	n –Equ	ıipmen	t
description									
UNIT – V		Noise pollution							urs : 12
		noise pollution - Environme							
		eration, propagation, etc., So							sures
		noise -Environmental and in				control le			
Total Contact H	Iours : 60	<u>.</u>	otal Practi						ours :60
Programme O	ut come	An ability to formulate, and caused by infrastructure dev	2		e prob	lems rela	ted air	enviro	onment
Text Books									
1. Rao.M.N. et a	al., Air Polluti	on, Tata Mc.Graw Hill, 2013	•						
2. Rao.C.S., En	vironmental I	Pollution Control Engineerin	g , New A	Age Int	ernatic	onal Publi	shers, 2	2014.	
Reference Boo	ks								
1. Noel de Neve	ers, Air Pollut	ion Control Engineering, Mo	.Graw Hi	ll, New	v York	. 2012.			
2. Stern, A.C., A	ir Pollution ,	Vol.I, II and III, Academic I	Press, 2012	2.					
3. Cunniff, P.F.,	Environmen	tal Noise Pollution, John Wi	ley and Sc	ons, 20	10.				

Department : Civil Engineering Programme : B.Tech. Civil Engineering												
				ELECTIV	/E SUBJ	ECT						
Course			Course N	Iamo		Ηοι	urs / W	Veek	Credit	Maxi	mum N	Marks
Code						L	Т	Р	С	IA	UE	Total
CE E20	R			SMENT AN DF STRUCT		4	0	0	4	25	75	100
Objective (s))	2. To kn	ow about rep	deterioration pair materials ition of the str	-	of mat	erials					
UNIT – I		Assessme	ent of Struct	ures						То	tal Hou	ırs : 12
Condition As capacity – lo monitoring.		testing -	condition as	ssessment of						valuatio	n and	health
UNIT - II		Deterio	oration Proc	ess						То	tal Hou	ırs : 12
Agencies caus combing etc.,		0		0				_	nical atta	ck, cree	p, fire,	honey
UNIT - III		Cracks								То	tal Hou	ırs : 12
Structural and	l n	on structur	al cracks -Ty	pes of structu	ral distre	ss in f	ounda	tions,	roofs, flo	ors, wa	lls.	
UNIT - IV		Repair	Materials ar	nd Technique	es					То	tal Hou	ırs : 12
Repair Techr structures – w									bridges	and w	ater re	taining
UNIT - V		Corrosi	on Process	& Monitorin	g of Stru	icture	s			То	tal Hou	ırs : 12
Factors influe deterioration,		0			1					structur	es – M	asonry
Total Contact	t H	lours : 60	Total Tuto	rials : 0	Total	Practi	cal Cla	ss : 0		To	otal Ho	urs :60
Programme	Οι	ut come	Ability to a	nalyse The dis	stress str	ucture	and p	ropose	e repair n	nethodo	ology	
Text Books												
1. Ransom,W. 2. Perkins.P, F		. 0				e Stru	ctures	, CRC	Press, 20	002.		
Reference B	00	ks										
 Richardso Breysse.D 	on,]), №	B.A., Reme Non-Destru	edial Treatme active Assessi	Concrete, CF nt of Building ment of Conc blishers, 2012.	gs, Butter rete Stru	worth	-Heine			s of Sin	gle and	

Department : Ci	vil Engineeı		<u>i</u>		B.Tec	h. Civ	il Engine	ering		
		ELECTIV	VE SUE	JECT						
Course Code		Course Nome		Hou	rs / W	leek	Credit	Max	imum I	Marks
Course Code		Course Name		L	Т	Р	С	IA	UE	Total
CE E21	BRI	DGE ENGINEERING	3	3	1	0	4	25	75	100
Objective (s)		w the investigation of Brid bridge loads (iv) to know	· · · ·			0	•	~	dation	(iii) To
UNIT –I	Introduct	ion						,	Total F	Iours 9
Investigations for	or major bi	of Bridges, Classification ridge – Topography, cat Discharge-Methods, Linea	chment	, hydro	0					0
UNIT – II	Bridge Fou	Indation						,	Total F	Iours 9
foundation – typ methods – Tilt c	pes –Design orrection –					-		tion -	well si	nking -
UNIT –III	Loads or	n Bridge						,	Total H	Hours 9
0		l and railway bridges- So , Multispan Bridge, Major	0		1	and at	outments	, Mino	r Bridg	ges and
UNIT –IV	Construc	ction of Bridges						,	Total F	Hours 9
Bridge superstrugirder bridges .	icture – sup	oports and centering for	RC bri	dges –	erecti	on pro	ocess of	RC gir	ders ar	nd steel
UNIT –V	Mainten	ance of Bridges						,	Total H	Iours 9
	1	bridges, Maintenance of ilding of bridges- bridge		cture g	irders-	Load	testing o	n bridg	es-Ten	nporary
Total Contact H	ours : 15	Total Tutorials : 0	Tota	l Practi	cal Cla	lss : 45		Т	otal Ho	ours :60
Programme Ou	it come	At the end of the cours and its construction	se, the s	tudent	is able	to sel	ect the t	ype of	bridge,	design
Text Books										
	C, Rangwala	Engineering" Tata McG P.S, Rnagwala.K.S., Brid			0			olishers	, 2013.	
2. Singh, V.P , W	Vells and Ca	Oxford University Press,2 aissons, Nemchand & Bro Bridge Engineering, Oxfo	others,1		hers, 2	013.				

Department : C	<u> </u>	Programme	B.Te	ch. Civ	il Enginee	ering		
	ELECTIVE	······	ırs / V	Voolr	Credit	Mar	imum 1	Maulto
Course Code	Course Name	L	T	Р	Crean	IA	UE	Total
CE E22	ADVANCED DESIGN OF STEE STRUCTURES		1	0	4	25	75	100
Objective (s)	1. To analyse the few important steel						.1	
	2. To understand the codal provision	s for design	of var	rious st	eel structu			
UNIT-I	Beam-Columns Joints					1	'otal He	ours:9
Behaviour - tor	rsional buckling in beam-columns- intera	iction under	biaxia	al loadi	ng- desigr	of bea	am-colu	ımns –
design of eccen	trically loaded base plates.							
UNIT-II	Industrial Structures:					Т	'otal He	ours:9
Loads – wind lo	oad calculations - design of Trusses, kne	e braced tru	sses, d	esign c	of braced a	and un	braced	portal
and gable porta	l frames including joints. Design of gant	ry girders, a	nd gar	ntry giro	der colum	ns.		-
UNIT - III	Steel chimneys & Towers					Т	'otal He	ours : 9
Chimneys: loa	iding and load combinations – design	and stabil	lity co	onsider	ations –	design	of ba	se and
foundations for			•			0		
Towers: Analys	sis and design of lattice towers- transmi	ssion line to	wers-	config	urations-	types-l	oads a1	nd load
combinations-	temperature effect-design principles.							
UNIT – IV	Bridges							
Design of Plate	e girder bridges – influence line diagram	- IRC guide	lines-	effect of	of wind. I	Design	of trus	s girdeı
bridges- types of	of bearings and design of bearings.	_				_		_
UNIT - V	Fatigue resistant design					Т	'otal He	ours : 9
Factors affectir	ng fatigue life- fatigue assessment – fat	gue analysis	s. Pre-	Engine	eered Buil	dings:	Advan	tages -
design principle	es. Design in light gauge steel sections	Introductio	on to	variou	s software	e for d	lesign d	of stee
structures.								
Total Contact I	Hours : 45 Total Tutorials : 15	Total Practs	ical Cl	ass : 0		Te	otal He	ours :60
Programme O	1. At the end of this constructures.	urse the stu	ident	is able	to design	n the i	ndustri	al stee
Text Books								
1. Shiyekar, M	I.R., Limit State Design in Structural St	eel, Second	Editio	n, PH	[Learning	g Priva	te Ltd.,	Delhi
2013.	, 0	,		<i>,</i>	C	,	-	
2. Shah, V.L.,	and Veena Gore, Limit State Design Of	Steel Struct	ures, S	Structu	res Public	ations,	Pune,	2012.
Reference Boo								
1. Subramania	n, P., Design of steel structures, Oxford	Publishers	New	Delhi.	2007			
	S.S., Design of Steel Structures, IK Inter					. New	Delhi.	2014.
	S., Design of Steel Structures, Pearson E			0		,	,	.
	ehlot. Ram Chandra. Design of steel str				ard Public	here 7	2012	

4. Virendra Gehlot, Ram Chandra, Design of steel structures, Vol.I & II, Standard Publishers, 2012

	ngineering	•••••••••••••••••••••••••••••••••••••••			Гесh. (Civil Engi	neering		
		ELECTIVE SU					T	-	-
Course Code		Course Name		rs / W	· · · · · · · · · · · · · · · · · · ·	Credit		imum I	
			L	Т	Р	С	IA	UE	Total
CE E23		ONMENTAL IMPACT ASSESSMENT	4	0	0	4	25	75	100
Objective (s)	enviro 2. To dec 3. To hav	ive a knowledge on the nment cide appropriate technolog ve a knowledge on the vari- pare the BIS and EMP.	ies to qu	uantif	y the i	mpact.	pmenta	ll Proje	ects on
UNIT - I	Ξ	vs and Acts					٢	Гotal Н	ours 12
Industrial policy state Limitations of EIA - UNIT - II EIA methodologies -	ement of th Minimum N Methodo – Appropria	te Methodologies, Quanti	egal an u of Inc	id Reş lian S	gulatoı tandar	ry aspects ds - WHC	in Ind) stand: 	ia - Ty _l ards. Fotal H	pes and ours 12
Test Model format -	······							1 7 7	4.0
UNIT - III	······	ty impact ions and factors, air qualit	-		-			otal Ho	
Noise impact: Noise	and sound,	ntal projects –Land and se the effects of noise on p							
Noise impact: Noise transportation noise in UNIT - IV Energy Energy impact consist power plants, Vegeta mitigating measures,	and sound, impact. gy Impact iderations, d ation and W alternatives	the effects of noise on po- lata sources, energy conse Vild life impact: Biological - Types, steps in performin	rvation	data, ots ar	EIA EIA	and rating of hydro ns, impac	g metho , therm	ods, est Fotal H al and ora and	imating ours 12 nuclear I fauna,
Noise impact: Noise transportation noise in UNIT - IV Energy Energy impact consist power plants, Vegeta mitigating measures, public services and fa	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa	the effects of noise on po- lata sources, energy conse Vild life impact: Biological - Types, steps in performin	rvation concepting soci	data, ots ar	EIA EIA	and rating of hydro ns, impac	g metho , therm et on flo	ods, est Fotal H al and ora and ent, ana	imating ours 12 nuclear I fauna,
Noise impact: Noise transportation noise UNIT - IV Energy Energy Energy impact consist power plants, Vegeta mitigating measures, public services and faUNIT - VSuEnvironmental Mana	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa immarization agement pla	the effects of noise on per- lata sources, energy conse Vild life impact: Biological - Types, steps in performinants acts, social impacts	rvation concepting soci acts impacts	data, ots an	EIA EIA nd terr	of hydro ns, impact impact a	g metho , therm at on flo	ods, est Fotal H al and ora and ent, ana Fotal H	imating ours 12 nuclear l fauna, llysis of ours 12
Noise impact: Noise transportation noise UNIT - IV Energy Energy Energy impact consist power plants, Vegeta mitigating measures, public services and faUNIT - VSuEnvironmental Mana	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa- immarization agement pla ution - comp	the effects of noise on po- lata sources, energy conse /ild life impact: Biological - Types, steps in performinates acts, social impacts on of environmental impa- un, Public involvement - arison of alternatives-Train	rvation concepting soci acts impacts	data, ots an o eco s of c	EIA EIA EIA Enomic	and rating of hydro ns, impact impact a nic profil	g metho , therm t on flo ssessmo e of th	ods, est Fotal H al and ora and ent, ana Fotal H ne com	imating ours 12 nuclear l fauna, llysis of ours 12
Noise impact: Noise transportation noise UNIT - IV Energy Energy impact consi power plants, Vegeta mitigating measures, public services and faUNIT - VSuEnvironmental Mana Exchange of information	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa immarization agement pla ttion - comp : 60	the effects of noise on po- lata sources, energy conse /ild life impact: Biological - Types, steps in performinates acts, social impacts on of environmental impa- un, Public involvement - arison of alternatives-Train	rvation concepting soci acts impacts ing l Practi y and qu	data, ots an o eco s of c cal Cl uaniti	EIA d terr nomic econor ass : 0 fy the	and rating of hydro ns, impace impact a mic profil	g metho , therm t on flo ussessmo le of th T lue to v	ods, est Fotal H al and ora and ent, ana Fotal H ne com Fotal Ho arious p	imating ours 12 nuclear l fauna, llysis of ours 12 munity, ours :60 orojects
Noise impact: Noise transportation noise in UNIT - IVEnergy EnergyEnergy impact consist power plants, Vegeta mitigating measures, public services and faUNIT - VSuEnvironmental Mana Exchange of informa Total Contact Hours	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa immarization agement pla ttion - comp : 60	the effects of noise on po- lata sources, energy conservited ild life impact: Biological - Types, steps in performing acts, social impacts on of environmental impa an, Public involvement - arison of alternatives-Train Total Tutorials : 0 Tota 1. An ability to indentify on environment an	rvation concepting soci acts impacts ing l Practi y and qu	data, ots an o eco s of c cal Cl uaniti	EIA d terr nomic econor ass : 0 fy the	and rating of hydro ns, impace impact a mic profil	g metho , therm t on flo ussessmo le of th T lue to v	ods, est Fotal H al and ora and ent, ana Fotal H ne com Fotal Ho arious p	imating ours 12 nuclear l fauna, llysis of ours 12 munity, ours :60 orojects
Noise impact: Noise transportation noise in UNIT - IVEnergy Energy Energy impact consist power plants, Vegeta mitigating measures, public services and faUNIT - VSu Su Environmental Mana Exchange of informa Total Contact HoursProgramme Out co Text Books	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa immarization agement pla ttion - comp : 60	the effects of noise on po- lata sources, energy conservited ild life impact: Biological - Types, steps in performing acts, social impacts on of environmental impa an, Public involvement - arison of alternatives-Train Total Tutorials : 0 Tota 1. An ability to indentify on environment an	rvation concepting soci acts impacts ing l Practi y and qu d plan	data, ots an o eco s of c cal Cl uaniti miti	EIA d terr nomic econor ass : 0 fy the gation	and rating of hydro ns, impact impact a impacts d measure	g metho , therm t on flo ssessme le of th lue to v es; to	ods, est Fotal H al and ora and ent, ana Fotal H ne com Fotal Ho arious p	imating ours 12 nuclean l fauna llysis of ours 12 munity ours :60 orojects
Noise impact: Noise transportation noise in UNIT - IV Energy UNIT - IV Energy Energy impact consignment consistent consistent consignment consignment consignment co	and sound, impact. gy Impact iderations, d ation and W alternatives acilities, impa immarization agement pla ution - comp : 60	the effects of noise on per- lata sources, energy consec- vild life impact: Biological - Types, steps in performing acts, social impacts on of environmental impacts on of environmental impacts on of environment an arison of alternatives-Train Total Tutorials : 0 Tota 1. An ability to indentify on environment an environment.	rvation concepting soci acts impacts ing l Practi y and qu d plan	data, ots an o eco s of c cal Cl uaniti miti	EIA d terr nomic econor ass : 0 fy the gation	and rating of hydro ns, impact impact a impacts d measure	g metho , therm t on flo ssessme le of th lue to v es; to	ods, est Fotal H al and ora and ent, ana Fotal H ne com Fotal Ho arious p	imating ours 12 nuclear l fauna, llysis of ours 12 munity, ours :60 orojects

HS E24 ENGINEERING ECONOMICS

5	• • • • •	HS E24 ENGINEERING		-		0, 11 E	•	•	
Department : C	ivil Engineering	ć		e : B.	Tech	. Civil E	nginee	rıng	
		ELECTIVE SUBJ		,			7	-	-
Course Code		Course Name		rs / W	÷	Credit	÷	· •	Marks
			L	Т	Р	С	IA	UE	Total
HS EE24	ENGINI	EERING ECONOMICS	4	0	0	4	25	75	100
Objective (s)									
UNIT – I	<u>.</u>	to Economics							ours : 12
		f Supply and Demand, Conce	1	0		~		0	0
		ncy, Scope of Engineering Ed							
		Opportunity cost, Break-Eve							
	ial selection for	product, Design selection for	a prod	uct, B	uildii	ng mater	ial sele	ction,	Process
Planning,									
UNIT – II	Value Engine	<u> </u>							ours : 12
•		Engineering-Function, Aims, Va		_					
11		Value of Money, Single Paymen	1					· ·	,
	· 1	ayment Series Compound Amo			-	-			0
	1 2	eries Present Worth Factor, Eq	-			1		2	
		al Equivalent Factor, Effective	Interest	t Rate	, Exa	mples in			
UNIT – III	Cash Flow D	Y							ours:12
	1	ternatives- Present Worth Met							0
		Diagram), Future Worth Meth							0
		Diagram), Annual Equivaler							
\sim	r	h Flow Diagram), Rate of Retu	rn Meth	iod, E	xamp	ples in all	••••••	••••••	
UNIT – VI		and Maintenance Analysis							ours : 12
		of Replacement Problem, D		nation	of 1	Economi	c Life	of an	n Asset,
1		n New Asset - Capital Recovery							
	d Concept of	Challenger and Defender, Sir	nple Pr	obabi	listic	Model	for ite	ms wł	nich fail
Completely.	r								
UNIT – V	Depreciation								ours:12
	0	thod of Depreciation, Declini	0				1		
		Depreciation, Sinking Fund							
1 7	1	Method of Depreciation, E							,
		Decisions- Procedure to A	djust I1	nflatio	n, E	lxamples	on c	ompar	ison of
		of Economics Life of asset.						-	
Total Contact H		Total Tutorials : 0 T	otal Pra	ctical	Class	s:0	To	otal Ho	ours : 60
Programme Ou	tcome								
Text Books									
		ring Economics, Prentice-Hall							
		Engineering Economics, Wile	y India (P) Lto	1., 20	12.			
Reference Boo									
0		G. and Canada, J.R Engineer	0	-					
		d Leavenworth, R.S., Principles		/	ng E	conomy	Ronal	d Pres	s,1976.
	· · · ·	g Economics, Iowa State Press,	r a						

5		gram	me: B	.Tech.	Civil Eng	ineering	-	
Department :	Civil Engineering	DIE	ידי דיר					
	ELECTIVE SU			V7 1	C 1.	٦.٢	· 7	л. 1
Course code	Course Name	H0 L	urs/V T	Р	Credit C	IA	imum I UE	Total
CE E25	DESIGN AND CONSTRUCTION OF PREFABRICATED STRUCTURES	<u>г</u> 3	1	Р 0	4	25	75	100a
Objectives	 To familiarize the design of basic ele To familiarize the students with varian adopted in practice. 		1				hniques	3
UNIT -I	Materials in Precast Structures						Total	Hours : 9
Materials, adr	nixtures, pigments - Modular co-ordination	n, sta	Indarc	lization	n and tol	erances-	system	of pre-
fabrication. P	re-cast concrete manufacturing techniques,	Mot	ılds -	-constr	uction de	esign, m	aintena	ince and
repair.								
UNIT -II	Precast Construction Techniques							Hours : 9
	chniques - Planning, analysis and design con							
-	rection of structures. Curing techniques inclu	ıding	accel	erated	curing su	ch as st	eam cu	ring, hot
air blowing, et								
UNIT -III	Precast concrete floors and beams							Hours : 9
	ne analysis, Precast concrete flooring options						design	of
individual unit	s, design of composite floors, Composite and	l non	-com	posite	reinforced	l beams		
UNIT -IV	Precast concrete columns and connecti	ons					Total	Hours : 9
	te columns and their design. Basic mechanism						ression	joints,
shear joints, te	nsion joints. Connections-pin jointed and me	omen	t resis	sting co	onnections	5.		
UNIT -V	Application of Prefabricated structures							Hours : 9
	re-fabricating technology for low cost and m					ull pre-ca	ast proc	lucts like
	hutters, Ferro-cement in housing - Water tan					·····•		
Total Contact				l Classe				ours : 60
Programm	ne Outcome Student should able to desi						execute	e the
	construction sequence in a	proje	ct wit	h prec	ast elemer	its.		
Text Books				-				
1. Levitt. 2007,	M., Precast concrete - Materials, Manufac	ture	Prope	erties a	nd Usage,	Applie	d Scien	ce Publs.
	T., Handbook of Pre-cast Construction, Vol.							
3. Kim S	Elliott, Precast Concrete Structures, Butterw	orth	Heine	emann	Publisher	s, 2002.		
Reference Bo	ooks							
1. Richar	dson,J.G., Pre-cast concrete Production, Cen	nent a	and C	oncret	e Associat	ion, Loi	ndon, 1	973.
2. Madha	va Rao.A-G., Modern Trends in Hou	sing	in D	Develop	oing Cour	ntries, C	xford o	& UBH
Publisl	ning co., 1985	5		-	-			
3. Lewicl	xi.B., Building with Large Pre-fabrications, El	sevie	r Pub	lishers				

Department : Civil Engineering Programme: B.Tech. Civil Engineering ELECTIVE SUBJECT										
	[K			~	•		
Course Code		Course Name		urs/W	·····	Credit		kimum M	·····	
			L	Т	Р	С	IA	UE	Total	
CE E26	DESIC	IQUAKE RESISTANT SN OF STRUCTURES	3	1	0	4	25	75	100	
Objective(s)	2. To p structure	ndy the effect of earthqual provide a basic understa es. urn the provisions in the I	ınding	of E	ngineeı	ring seism	nology a	nd dyna		
UNIT - I	Elemen	ts of Engineering Seisn	nology					Total H	Iours : 9	
	0	ismology - characteristics aphs - effect of earthquak		1		1	1		– types	
UNIT - II	Theory	of Vibrations						Total H	Iours : 9	
		ulation of equation of mo damped vibrations - Basic		0	0		2			
UNIT – III	Structura	al Systems						Total H	Iours : 9	
Principles of earth irregularities .	nquake re	under past earthquakes- le sistant design - Structura ction to IS Codes						Plan and		
		ncrete and steel elements u Indian Standard Codes -I		-	0			ctility and	d energy	
UNIT - V		ation of Design lateral l		177		.013720 1.		Total I	Hours :9	
ļ	-	rthquake loads – equivaler		force	nroce	dure as ne	r IS 1893			
0		eams and columns for ear			1	aare as pe	10 10/0		1000	
Total Contact Hou	ırs : 45	Total Tutorials : 15	Tota	l Prac	tical Cl	ass : 0		Total H	ours :60	
Programme outco	me	Students are expected t to adopt detailing of rein								
Text Books										
India Pvt Ltd.	New Del	nish Shrikhande "Earthq hi, 2013 e Resistant Design of Stru						Prentice	Hall of	
Reference Books	;									
2. A K.Chopra, " Hall of India ('Dynamic P) Ltd., 20		d Appl	ication	s to Ea	arthquake	Enginee	ring" Pre		
Wiley & Sons,	New Yor						Diry Dui	ungs, Jo	1111	
4. Stratta, J.L "M	anual of s	eismic Design", Pearson	Educat	ion Lt	d.,2004	.				

Department : Civil Engineering Programme : B.Tech. Civil Engineering										
		ELECT	IVE S	SUBJE	CT					
Course Code		Course Name		Hou	rs / W	leek	Credit	Ma	ximum I	Marks
				L	Т	Р	С	IA	UE	Total
CE E27	DESI	GN OF INDUSTRIA STRUCTURES	L	3	1	0	4	25	75	100
Objective (s)		understand the planning understand the design pr								
UNIT - I									Total H	Iours : 9
		Structures - Layout requi fety - factories act.	ireme	nts - lig	hting a	and Ve	entilation -	protec	tion agai	nst
UNIT II									Total H	Iours : 9
Roofing configur - detailed design.	ation – typ	bes of trusses - Beams an	nd latt	ice trus	ses - T	ype of	f roof cove	ering m	aterials -	purlins
UNIT III									Total H	Iours : 9
		of hopper for different m lesign - Conveyors and s					al sides - h	opper	bottom -	
UNIT IV									Total H	Iours : 9
Gable frames of u by various metho		coss sections - varying de	pth –	- pin-joi	nted k	nee bi	acings - de	esign o	f joints -	analysis
UNIT V									Total H	Iours : 9
Design of pre-eng	gineered st	tructures – design examp	oles.					I		
Total Contact Ho	ours : 45	Total Tutorials : 15	Tot	al Prac	tical C	lass : 0)		Total H	ours :60
Programme Out	t come	The students would be problems.	come	confid	ent of	design	of practic	al indu	strial des	sign
Reference Book										
1 Punmia .B.C., Jain A.K, Arun Kumar Jain ,"Comprehensive R C C Designs", Laxmi Publications (P) Ltd., New Delhi, 2012.										Ltd.,
		n in Steel Structure", Prer on J.E. "Steel Structure -					Harpor	1 Row	1080	
		Structures", Prentice Ha						I NOW	- 1700	
		n of Steel Structures" Ne								

	Civil Engineeri				B.Tech.	Civil Eng	ineering	5	
	T	ELECTIVE SU				· · · · · · · · · · · · · · · · · · ·			
Course code		Course Name	Ho	· · · · · · · · · · · · · · · · · · ·	Week	Credit	Max	imum I	Marks
Course coue			L	Т	Р	С	IA	UE	Total
CE E28	1	ORK FOR CONCRETE STRUCTURES	4	0	0	4	25	75	100
Objectives		phasis on the importance of fe niliarize the students with varioures.					-		ete
UNIT -I	Formwork m	aterials and design concept	S				,	Total H	ours : 12
	pts-Loads on f	her materials. Form coatings a ormwork- estimation of perm				laximum I	Bending	Mome	nt, Shear
UNIT -II	Forms for for	ootings, walls and columns					,	Total H	ours:12
Column Form		chieving Formwork Econom	J				,	0.0 0-1	
Economy in	ab and Beam Slab Construc	e am Formwork Formwork, Various Slab and ction, Design of Slab and F					ons Off	ered, A	0
Traditional Sl Economy in Formwork De	ab and Beam Slab Construc sign	Formwork, Various Slab and tion, Design of Slab and E					ons Off on of	ered, A Slab ar	chieving nd Beam
Traditional Sl Economy in Formwork De UNIT -IV Formwork for	ab and Beam Slab Construc sign Formwork f r Shells, Dorr	Formwork, Various Slab and	Beam Tun	Forn	nwork, Bridge	Illustrati	ons Off on of , k and f	ered, A Slab ar Total H lying fo	chieving d Beam ours : 12 ormwork,
Traditional Sl Economy in Formwork De UNIT -IV Formwork for	ab and Beam Slab Construct sign Formwork for Shells, Dom ad Limitations of	Formwork, Various Slab and tion, Design of Slab and F for special structures nes, Overhead Water Tanks,	Beam Tun	Forn	nwork, Bridge	Illustrati	ons Off on of , k and fl ng Form	ered, A Slab ar Fotal H lying fo twork F	chieving d Beam ours : 12 ormwork,
Traditional SI Economy in Formwork De UNIT -IV Formwork for Advantages an UNIT -V Shores/Props	ab and Beam Slab Construct sign Formwork f r Shells, Dom ad Limitations of Formwork S and Drop hea	Formwork, Various Slab and tion, Design of Slab and E for special structures nes, Overhead Water Tanks, of Flying Forms, Slip forms Fo	Beam Tun orm f	Forn nel, l ailure Desi	nwork, Bridge s-cause	Illustrati formworl es, Avoidin	ons Off on of , k and fl ng Form ,	ered, A Slab ar Total H lying fo twork F Total H	ours : 12 rmwork ailure
Traditional SI Economy in Formwork De UNIT -IV Formwork for Advantages an UNIT -V Shores/Props	ab and Beam Slab Construct sign Formwork for the Shells, Dom and Limitations of Formwork Stand Drop heat of Scaffolds, The	Formwork, Various Slab and ttion, Design of Slab and E for special structures nes, Overhead Water Tanks, of Flying Forms, Slip forms Fo Supports and Scaffold ads, Multi-Legged Shoring To imber Scaffolds and Metal Sca	Beam Tun orm f wers, ffolds	Forn inel, 1 ailure Desi	nwork, Bridge s-cause	Illustrati formworl es, Avoidin Vertical S	ons Off on of , k and fl ng Form , upports	ered, A Slab ar Total H lying fo nwork F Total H for Fo	ours : 12 rmwork ailure ours : 12 rmwork
Traditional Sl Economy in Formwork De UNIT -IV Formwork for Advantages an UNIT -V Shores/Props Classification	ab and Beam Slab Construct sign Formwork for a Limitations of Formwork S and Drop heat of Scaffolds, Ti Hours: 60	Formwork, Various Slab and ttion, Design of Slab and E for special structures nes, Overhead Water Tanks, of Flying Forms, Slip forms Fo Supports and Scaffold ads, Multi-Legged Shoring To imber Scaffolds and Metal Sca	Beam Tun orm f wers, ffolds al Pra ate th	Forn Inel, 1 ailure Desi s actica ne pro	nwork, Bridge s-cause gn of l Classe s and o	Illustrati formworl es, Avoidin Vertical S es: 0 cons of va	ons Off on of , k and fl ng Form , upports	ered, A Slab ar Fotal H lying fo twork F Total H for Fo Total H	chieving ad Beam ours : 12 ormwork, ailure ours : 12 rmwork, ours : 60
Traditional SI Economy in Formwork De UNIT -IV Formwork for Advantages an UNIT -V Shores/Props Classification of Total Contact Programme O Text Books	ab and Beam Slab Construct rsign Formwork for ad Limitations of Formwork S and Drop hea of Scaffolds, Ti Hours: 60 Dutcome	Formwork, Various Slab and ttion, Design of Slab and E for special structures nes, Overhead Water Tanks, of Flying Forms, Slip forms For Supports and Scaffold ids, Multi-Legged Shoring To imber Scaffolds and Metal Sca Total Tutorials : 0 Tot Student will able to appreci	Geam Tun orm f wers, ffolds al Pra ate th for sp	Forn Inel, 1 ailure Desi s actica be pro pecific	nwork, Bridge s-cause gn of l Classe os and o c purpe	Illustrati formworl es, Avoidin Vertical S es: 0 cons of va ose.	ns Off on of k and f ng Form upports rious fo	Fered, A Slab an Fotal H lying fo twork F Fotal H for Fo Fotal H rmwork	chieving ad Beam ours : 12 rmwork, failure ours : 12 rmwork, fours : 60 xs and
Traditional SI Economy in Formwork De UNIT -IV Formwork for Advantages an UNIT -V Shores/Props Classification of Total Contact Programme O Text Books	ab and Beam Slab Construct sign Formwork for Shells, Dom ad Limitations of Formwork S and Drop hea of Scaffolds, Ti Hours: 60 Dutcome ha, "Formwork	Formwork, Various Slab and ttion, Design of Slab and E for special structures nes, Overhead Water Tanks, of Flying Forms, Slip forms For Supports and Scaffold ids, Multi-Legged Shoring To imber Scaffolds and Metal Sca Total Tutorials : 0 Tot Student will able to appreci- identify suitable formwork	Geam Tun orm f wers, ffolds al Pra ate th for sp	Forn Inel, 1 ailure Desi s actica be pro pecific	nwork, Bridge s-cause gn of l Classe os and o c purpe	Illustrati formworl es, Avoidin Vertical S es: 0 cons of va ose.	ns Off on of k and f ng Form upports rious fo	Fered, A Slab an Fotal H lying fo twork F Fotal H for Fo Fotal H rmwork	chieving ad Beam ours : 12 rmwork, failure ours : 12 rmwork, fours : 60 xs and

Department : Civ	ril Enginee		<u>,</u>		ch. Ci	vil Engine	ering		
		ELECTIVE S	······································		Voolz	Credit	Max	imum I	Jarles
Course Code		Course Name		Hours / Week		Crean	IA	UE	Total
CE E29	DISAS	TER MITIGATION AND MANAGEMENT	4	0	0	4	25	75	100
Objective (s)	 To disat To g To g To c To c resp 	provide students an exposure the ensure that students begin to sters, disaster prevention and gain a preliminary understandi enhance awareness of institution develop rudimentary ability to onse in areas where they live, ng disaster	o unde risk rec ng of a onal pr respor	rstand luction pproac ocesses id to th	the re thes of in the	elationship Disaster I e country a	betwee Risk Rec and with po	n vulno luction otential	(DRR)
i.	er - Differ	ent approaches - Concept of	Risk -	Levels	of dis	asters - D	i		
UNIT - II Ha	zards and	l Vulnerability					Г	'otal Ho	ours : 12
Characteristics and factors- vulnerablehazards.UNIT - III	nd damago pility asses Disaster M	azards - response time, freque e potential of natural hazards sment- Vulnerability and dis fanagement Mechanism ent and crisis management - 1	s- haza aster 1	rd asso isk- V	ulnera	nt- Dime bilities to	nsions o flood a	of vuln and ear otal Ho	erability thquake ours : 12
1	0	n, Mitigation and Preparedness			0	-	1		,
UNIT - IV	Capacit	y building & Coping with d	lisaste	r			1	'otal Ho	ours:12
capacity for redu	cing risk -	Structural and nonstructural Counter disaster resources an ional levels- Coping strategies	d their	utility	in disa	ister manag		0	0
UNIT - V		ng for disaster management					Г	'otal Ho	ours : 12
management Ac	t and Pe	agement planning- Steps for plicy in India- Organisation trict disaster management plan	nal str	0				-	
Total Contact Ho	ours : 60	Total Tutorials : 0 Tot	tal Prac	tical C	lass : 0)	٢	Гotal Н	ours :60
Programme Out come At the end of this course, the students will be able to reconstruct vulnerability of the planet in general and India in particul would create a basis to work towards preparedness and also culture of safety and prevention						ular to	lar to disasters. Also,		
Text Books		i							
2012.		ldhartha Gautam, Murthy.N.J			0				
	- /	an Kumar Sahoo, Disaster Ma	nagem	ent & l	Mitigat	tion, Dom	inant Pu	blisher	s, 2014.
Reference Book									
ADPC, Bang 2. Chakrabarty, New Delhi 20	kok, 2004. U. K. Ind 007	d Z. Community Based Disast dustrial Disaster Management aster Management in India, No	and I	Emerge	ency R	esponse, 1			

Department :	Civil Engineerin	<u> </u>	<u> </u>		.Tech	. Civil Eng	gineering	F			
		ELECTIVE SU	·······*								
Course code		Course Name	Hours/Week		eek	Credit		Marks			
			L	Т	Р	С	IA	UE	Total		
CEE 30		ON AND DRAINAGE IGINEERING	4	0	0	4	25	75	100		
Objectives	Dejectives 1. To familiarize the students with various irrigation practices adopted										
	2. To iden channel	tify the irrigation requirements	ıts of	vario	us cro	ps and to	design i	rigation	1		
UNIT -I	Types of Irriga	ation Systems					F	Гotal H	ours : 12		
ļ	······································	es and disadvantages of Irrig	ation	יn - En	vironr	nental effe					
relationship: S Classes and av	Soil and its funct vailability of soil	canals, Tanks, Wells and In tion - Physical properties of l water - Movement of wate hip - Salt problems in soil an	soil a er in	and th soils -	eir im - Mea	portance : surement	in relation of soil r	on to iri	rigation -		
UNIT -II	Irrigation Wa	ater Requirement					F	Гotal H	ours : 12		
	i	<u>+</u>	s est	imatic	n - C	Crop factor - Lysimeters - Effective					
		ements - Water requirement									
irrigation wate	· ·	1				1	,		. ,		
UNIT -III	Methods of I	rrigation				Total Hours : 12					
Surface, subsu	irface and overh	lead methods - Check basin	, bor	der &	furro	w, Drip a	nd sprir	nkler irr	igation -		
		ate and frequency of irrigatio				-	1		0		
UNIT -IV Design of Irrigation Channels						Total Hours : 12					
Design of unl	ined and lined	channels for irrigation - Lo	catio	n and	desig	n of cana	l regulat	ion str	uctures -		
Cross drainage	e structures - Me	asuring devices.									
UNIT -V	Land Develo	pment and Management					+	Гotal Н	ours:12		
Land Develop	oment: Reclama	tion and management of sa	aline	& all	kaline	soils, wat	ter loggi	ng, Ca	uses and		
	0.	construction and maintenan			0	-	0	n Mana	agement:		
Management o	of irrigation syste	em - water charge assessment	t and	water	use n	nanageme	nt.				
Total Contact	Hours: 60	Total Tutorials : 0 Tot	al Pr	actical	l Class	ses: 0	Total	Hours :	. 60		
		Student should able to iden	itify t	he sui	table	method of	f irrigatic	on and v	water		
Programm	ne Outcome	requirement for a given soil and crop. Students should also be able to design									
		and manage irrigation syste	ms.								
Text Books											
	. 0 0	ineering, Tata Mc-Graw-Hill									
2. Sharma.R.	K., and Sharma.	T.K., Irrigation Engineering	; , S.C	Chand	& Co	mpany Lt	d, 2014.				
Reference Bo	oks										
1. Punmia B. Publication		r Jain, Pande Bb Lal, Irrigati	on &	: Wate	r Pow	ver Engine	ering, La	akshmi			
		ter Power & Water Resource	s En	gineer	ing, S	tandard P	ublishers	, 2013.			
	. 0	n Engineering, Wiley India (0	0.						
0	. 0	pation and water power Eng				earning (I	D) I td N		1h: 2000		

4. Das, M.M, Saikia, M.S Irrigation and water power Engineering, PHI, Learning, (P) Ltd, New Delhi, 2009